Generating ARM MMU Page Tables with MMUgen

Mmugen isa utility program that creates MMU tables for ARM’s cached processors. The
program reads a text file describing the target system’s memory map and generates a binary file
containing level-one and level-two MMU pagetables. The “INCBIN” assembler directive may
then be used to include the binary file into the final executablefile.

MMUgen could aso be adapted to generate MMU tables on atarget system at run time. This
reduces the ROM requirements dramatically, since rule files are much smaller than the generated
MMU tables, and can be compressed still further by encoding the rules as C-structures
(MMUgen does this encoding as an interim step in its current form).

As supplied, MM Ugen may be compiled as a native application on any system with an ANS
standard compiler, or may be run on ARMulator, using Semihosting to read data from the rules
text file and to write back the binary MMU tables on the Host system. MM Ugen is a command-
line utility. The command lineformat is: mmugen rul esfile outputfile

MMUgen features

MMUgen sets dl level-one entries to “domain 0” and assumes that domain zero is set up for
client-permissions. MM Ugen could be readily extended to allow domains to be specified for
each memory region.

The MMUgen rulesfile allows the user to specify for each region of the virtual address space:
The corresponding physical address for the region
Whether the region maps on to memory on the target board, or if the MMU should
generate an exception if the region is accessed
The access permissions for the region:
0 FULL_ACCESS (any process can read or write in that region)
0 SVC _READWRITE (privileged modes have full access, user mode has no
access)
0 NO_USR WRITE (privileged modes have full access, user mode has only read
access)
0 NO_ACCESS (neither privileged or user modes have read or write accessto the
region)
Whether the region is cacheable
Whether the Write Buffer is enabled for the region.

MMUgen Rules File Format
C-style comments (using /* ... */) are permitted anywhere in an MMUgen rulesfile.

The general format of arulesfilesis:

BASE_ADDRESS
LEVEL 1

LEVEL 2

POSTPROCESS

CodeSprite — PC and Embedded Software Consultants

BASE_ADDRESS

The BASE_ADDRESS entry must be specified; thisis the address at which your MMU table
will be placed in the physical memory map. The address must be on a 16K byte boundary. The
base address is used when generating level-1 table entries that refer to level-2 page tables.

All addressesin the rules file are expected to be in hexadecimal format.

LEVEL 1

In the LEVEL 1 section, the complete 4-gigabyte address space is specified. MM Ugen uses the
descriptionsin this section to generate 4096 table entries, each of which describes one megabyte
in the virtual address space. The virtual and physical addresses in this section must therefore be
on one megabyte boundaries. Typical entries are:

/* 1MB FLASH nmapped to RAM */ VI RTUAL 0x00000000 TO OxOOOFFFFF PHYSI CAL 0xC0400000 PAGES

)* External hardware */ VI RTUAL 0x50200000 TO 0x503FFFFF PHYSI CAL 0x50200000 SECTI ON
FULL_ACCESS NOT CACHEABLE AND NOT BUFFERABLE

)* Gap to 0x80000000 */ VIRTUAL 0x60100000 TO Ox7FFFFFFF PHYS|I CAL 0x60100000 FAULT

There would be other entries between the ones shown here; it isimportant that the entriesin the
Level 1 section arein virtual-address order, and that no gaps are |eft in the description of the
memory map, otherwise an incorrect table will generated.

Note that regions marked with the PAGES keyword should be exactly one megabyte long, but
SECTION and FAULT regions can describe larger regions.

The first entry describes a megabyte of virtual memory space that will be mapped onto RAM
starting at 0OxC0400000. In the system that this example is taken from, the RAM is not
contiguous, so we have to specify further information (in the Level 2 section) that allows us to
close up the gaps in the physical memory space. We tell MM Ugen we want to specify further
information by using the word “PAGES’. This may also be required if we want to set different
access permissions for regions of memory smaller than 1 megabyte, or if the physica memory
present is smaller than a 1 megabyte chunk.

The second entry corresponds to a 2-megabyte region of hardware expansion space. Thisis one-
to-one mapped, has full access permissions for both privileged and user mode applications, and
is not cached or write-buffered.

The third entry describes aregion of virtual memory for which no corresponding physical
memory exists. The physical address specified is not important; the FAULT keyword will
generate table entries that will cause the MMU to signal an abort exception to the ARM
processor for any access to this virtual memory region.

LEVEL 2

This section isrequired only if any “PAGES” regions have been specified in the LEVEL 1
section. Remember that each “PAGES’ region in the LEVEL 1 section must describe exactly
one megabyte of the virtual address space. The corresponding entries in the LEVEL 2 section
also describe exactly one megabyte, and are defined in the same order that they appear in the
LEVEL 1 section.

CodeSprite — PC and Embedded Software Consultants

These rules allow MM Ugen to calculate where the corresponding level 2 page tables will appear
while generating the level 1 page table entries.

It'sworth noting that the level 1 table generated by MM Ugen will occupy 16K bytes of memory,
and each PAGES reference in the rules table LEVEL 1 section will cause afurther level 2 page
table to be generated, occupying another 1K bytes of memory.

Typical Level 2 rulesfile entries would be:

/* FLASH shadow i nage */ VI RTUAL 0x00000000 TO Ox0007FFFF PHYSI CAL 0xC0400000 LARGEPACES
FULL_ACCESS CACHEABLE AND BUFFERABLE

/* FLASH shadow i mage */ VI RTUAL 0x00080000 TO Ox000FFFFF PHYSI CAL 0xC0500000 LARGEPAGES
FULL_ACCESS CACHEABLE AND BUFFERABLE

/* Video RAM RAM bankO */ VI RTUAL 0x0C000000 TO OxOCOOFFFF PHYS|I CAL 0xC0000000 LARGEPACES
FULL_ACCESS CACHEABLE AND BUFFERABLE
VI RTUAL 0x0C010000 TO OxOCOFFFFF PHYSI CAL 0x0C010000 LARGEPAGES NO_ACCESS
NOT CACHEABLE AND NOT BUFFERABLE

/* RAM di sk - RAM bankO */ VI RTUAL 0x0DO00000 TO OxODO6FFFF PHYS|I CAL 0xC0010000 LARGEPACES
FULL_ACCESS CACHEABLE AND BUFFERABLE

/* RAM di sk - RAM bank1*/ VI RTUAL O0x0D070000 TO OxODOEFFFF PHYSI CAL O0xC0100000 LARGEPACES
FULL_ACCESS CACHEABLE AND BUFFERABLE

/* RAM di sk - no RAM */ VI RTUAL OxODOFO000 TO OxODOFFFFF PHYSI CAL OxODOFO000 LARGEPAGES

NO_ACCESS NOT CACHEABLE AND NOT BUFFERABLE

The first two entries describe the page entries corresponding to the first megabyte of virtual
memory. The virtual addresses are not used by MMUgen, except to tell it how many pagetable
entries to write for each descriptor. In this system, RAM appearsin the physical memory map in
512K chunks, with gaps between each chunk, therefore two descriptors are required to give one
megabyte of contiguous RAM in the virtual address space.

The descriptors for “ Video RAM” and “ RAM disk” describe 2-megabytes of virtual address
space, where only one megabyte of memory is physically present in the memory map.

CodeSprite — PC and Embedded Software Consultants

VIRTUAL ADDRESSES PHYSICAL ADDRESSES
***** 'T T T 7777 OXxODOFFFFF
OXODOFFFFF[No Access !
o L , OXODOF0000
OXODOEFFFF -
OXCO17FFFF
OXODOB6FFFF
TN - 0xC0100000
0x0D000000 N
. OXCOO7FFFF
OXOCOFFFFF N
N ~
DN 0xC0010000
o Video
- 0xC0000000
N /
No Access RS .
o T T T T TT ' OXOCOFFFFF
/ V 1 1
7/
0x0C010000 P ! !
7/ Vi .
. N 1
0x0C000000 | Video L | !
h N 1 1
N 1 1
N 1
S 1 0X0C010000

In the examples shown above, LARGEPAGES specifies that MM Ugen should generate level 2
table entries for 64K pages. If we need to define a memory map with finer granularity, we can
specify SMALLPAGES. This alows us to specify regions with 4K pages. This does not affect
the size of the page tables generated by MM Ugen.

ARM Architecture 5T aso has the capability to use “tiny” pages — each table entry specifies 1K
in the memory map. MM Ugen does not yet provide support for tiny pages.

POSTPROCESS

The (optional) final section of an MMUgen rulesfile allows the MMU table to be automatically
modified after it has been generated by the descriptorsin the Level 1 and Level 2 sections.

Although POSTPROCESS would never normally be used, expanding on the examples shown
above will show how POSTPROCESS can be useful in areal system.

In our example system, we want to copy code out of relatively slow FLASH, and execute it from
RAM. We therefore need to map some memory starting at virtual address 0x00000000 onto the
physical address of our RAM. Aswe' ve seen, the RAM isinconveniently segmented, so we need
to use level-2 pagetables to make the RAM appear to be contiguous in the virtual memory map.
So, in the level-1 section of the rulesfile, the first entry is marked with “LARGEPAGES’, and
descriptors are included in the level-2 section to complete the virtual to physical mapping.

CodeSprite — PC and Embedded Software Consultants

On reset however, we want to execute from FLASH (at physical address 0x00000000), until the
program image has been copied to RAM. This would not normally be a problem — we can copy
the code over before enabling the MMU. In our example system however, the external DRAM is
not available while the MMU and writebuffer is disabled. This may seem a contrived example,
but has been seenin area system.

So we have two options:
either to have two complete MMU tablesin FLASH - differing only in the first table entry,
or to set up the table for the correct operation before copying code to RAM and subsequently
modify the first entry of the MMU table when the code has been copied.

Remember that Level 2 page tables must be defined in the order that the “PAGES” descriptors
arelisted in the Level 1 section of therulesfile. Therefore, in this example we must set the first
descriptor to generate an MMU table in the form in which it will be required when running from
RAM.

The following POSTPROCESS directive can be used to modify the first entry of the MMU table,
changing it to full-access, cacheable and bufferable, mapping the first megabyte of the virtua
address space onto the first megabyte of physical address space:

POSTPROCESS ENTRY 0x00000000 EQUALS 0x00000C1A

Thisliteraly stores the value 0xOO000C1A at address 0x00000000 bytes into the MMU table.

CodeSprite — PC and Embedded Software Consultants

Example Files
EXAMPLEL1.RULES

Thisfile can be used to generate an extremely simple memory map — 4-gigabytes of virtual
address space with a one-to-one mapping onto physical memory. All memory is fully accessible,
and cached and write-buffered.

Thefile contains the BASE _ADDRESS directive, and just one descriptor linein the Level 1
section, describing the full 4-gigabyte memory space.

EXAMPLE2.RULES

Thisis quite acomplex example based on area system. The example descriptors shown in the
main text of this document were taken from this memory map.

The system had 2MB of FLASH, 1MB for code and 1IMB used asa FLASH disk drive.

AMB of RAM was fitted, of which IMB was reserved for a shadow-copy of the FLASH code,
1MB was shared by the video buffer and a RAM disk, and 2MB was available for stacks, heap
and C variables.

The RAM was not contiguous in physical memory, but instead appears as eight half-megabyte
chunks spread over more than 22MB of address space. Level 2 page tables are needed to make
the RAM appear contiguous in the virtual address space.

The virtual to physical address mapping carried out by the MMU means that the chunks of RAM
can be used in any order. Thereis another hardware restriction, in that the video frame buffer
must be at 0xC0000000 in the physical memory map. The video frame buffer in this systemis
19.2K byteslong, but small pages are used to reserve 32K bytes, allowing for future expansion.

Small Pages are also used when setting access permissions for the hardware registers, which are
grouped into 2K byte blocks. All other Level 2 page tables are set as Large Pages.

EXAMPLES.RULES

Thisisfor the same hardware as EXAMPLE2.RULES, but alows a more efficient use of RAM
to be made. Instead of reserving a complete 1-megabyte block of RAM for the shadow copy of
the FLASH code, three megabytes of RAM are mapped down to 0x00000000, and the “ RW-
BASE” isremoved from the ARM linker options. This allows the linker to assume that the read-
write data can follow on immediately from the code image, which isindeed the case once the
FLASH image has been copied to RAM for execution.

The areareserved for the video frame buffer is also extended, alowing the privileged mode
stacks to be placed above the frame buffer. This area was effectively unused in Example2.

CodeSprite — PC and Embedded Software Consultants

MMUgen Error Messages

Usage: MMUgen Rulefile Outputfile

An incorrect number of command line
arguments were specified; ensure that both the
rules file and an output file have been
specified.

Couldn't open Rulefile

Ensure the correct path to the rulesfile was
specified — when running from AXD, you need
to specify “..\..\Examplel.rules’ if therulesfile
isin the same directory as the project and
sourcefiles.

Couldn't open Output file

Ensure disk isn't full or write-protected etc.

Table data error - at end of Level 1, the table
was XxXXxxxxx bytes long (should be 0x4000)

MM Ugen performs a check to ensure that 4096
table entries have been generated from the
Level 1 descriptors. The number of bytes
shown in the error message will indicate if
there were too many or too few entries
generated.

Check that the rulesin your rules file span the
complete 4-gigabyte virtual address range,
without duplicating specification of any
particular region.

Unrecognised word

MMUgen has found aword in the rulesfile
that was not in its keyword list.

MMU pagetable level not set

The“LEVEL” keyword was not found before
the first memory map descriptor was read from
therulesfile.

MMU Table synchronisation error!
table_entry = Xxxxxxxxx, v_base = yyyyyyyy

This error will be reported if avirtual address
specified in the Level 1 section of the rulesfile
does not correspond to the virtual address
mapping onto the page table entry currently
being generated. Look for any gaps or
duplications in the virtual addresses specified
in your rulesfile.

CodeSprite — PC and Embedded Software Consultants

