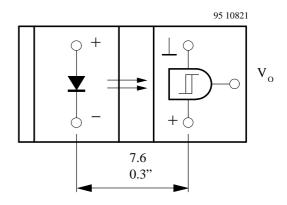

Transmissive Optical Sensor

Description

This device has a compact construction where the emitting-light sources and the detectors are located face to face on the same optical axes. The operating

wavelength is 950 nm. The detector consists of a photologic-IC with Schmitt-trigger and open collector output.


Applications

- Detection of opaque material, documents etc.
- Paper position sensor in copy machines.
- Position sensor for shaft encoder.

Features

- Output: "LOW" when infrared beam is not interrupted
- Inverter-open collector
- TTL compatible
- Built-in voltage regulator
- Plastic polycarbonate case, protected against ambient light
- No adjustment necessary
- Applicable connector AMP 171 825-3
- Aperture size 1 mm
- Two package variations

Pin Connection

TCSS1100/2100

Absolute Maximum Ratings

Input (Emitter)

Parameters	Test Conditions	Symbol	Value	Unit
Reserve voltage		V_R	6	V
Forward current		I_{F}	60	mA
Forward surge current	$t_p \le 10 \ \mu s$	I _{FSM}	3	A
Power dissipation	$T_{amb} \le 25^{\circ}C$	P _V	100	mW
Junction temperature		Ti	100	°C

Output (Detector)

Parameters	Test Conditions	Symbol	Value	Unit
Supply voltages		V_{S1}	16	V
		V_{S2}	20	V
Output current		Io	20	mA
Power dissipation	$T_{amb} \le 25^{\circ}C$	P _v	50	mW
Junction temperature		Ti	100	°C

Coupler

Parameters	Test Conditi	ons	Symbol	Value	Unit
Total power dissipation	$T_{amb} \le 25^{\circ}C$		P _{tot}	150	mW
Ambient temperature range			T _{amb}	-25 to +85	°C
Storage temperature range			T _{stg}	-40 to +100	°C
Soldering temperature	2 mm from case,	t ≤ 5 s	T _{sd}	260	°C

Electrical Characteristics $T_{amb} = 25^{\circ}C$

Input (Emitter)

Parameters	Test Conditions	Type	Symbol	Min.	Тур.	Max.	Unit
Forward voltage	$I_F = 50 \text{ mA}$		V_{F}		1.25	1.6	V
Breakdown voltage	$I_R = 100 \mu A$		B _(BR)	6			V
Junction capacitance	$V_R = 0$, $f = 1$ MHz		Ci		50		pF

Output (Detector)

Parameters	Test Conditions	Type	Symbol	Min.	Typ.	Max.	Unit
Supply voltage range			Vsı	4.5		16	V

Coupler

Parameters	Test Conditions	Type	Symbol	Min.	Тур.	Max.	Unit
Supply current	$V_{S1} = 16 \text{ V}$		I_{S1}		3	5	mA
Output current	$V_{S1} = V_{S2} = 16$ V, $I_F = 0$		I _{OH}			1	μΑ
Input threshold current	$V_{S1} = 5 V$		I_{FT}		5	10	mA
Hysteresis	$V_{S1} = 5 V$		I _{Foff} /I _{Fon}		80		%
Output voltage	$I_{OL} = 16 \text{ mA},$ $I_{F} \ge I_{TF},$ $V_{S1} = 5 \text{ V}$		V _{OL}		0.15	0.4	V
Switching frequency	$\begin{aligned} I_F & 3x \ I_{FT}, \\ V_{S1} &= V_{S2} = 5 \ V, \\ R_L &= 1 \ k\Omega \end{aligned}$		f_{sw}		200		kHz

Switching Characteristics

 $V_{S1} = V_{S2} = 5$ V, $I_F = 3$ x I_{FT} , $R_L = 1$ k Ω (see figure 1)

Parameters	Test Conditions	Symbol	Value	Unit
Rise time		t _r	50	ns
Turn-on time		t _{on}	1	μs
Fall time		t_{f}	20	ns
Turn-off time		$t_{ m off}$	3	μs

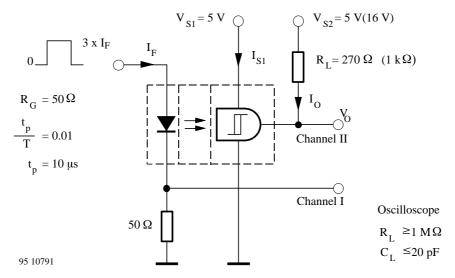


Figure 1. Test circuit for: t_r , t_{on} , t_f , t_{off}

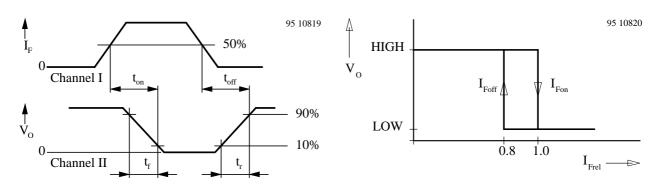


Figure 3. Hysteresis

Figure 2. Pulse diagram

Typical Characteristics ($T_{amb} = 25$ °C, unless otherwise specified)

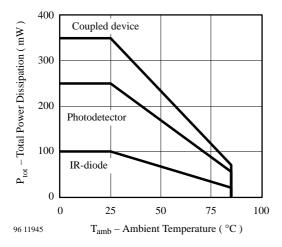


Figure 4. Total Power Dissipation vs. Ambient Temperature

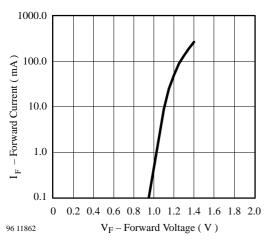


Figure 5. Forward Current vs. Forward Voltage

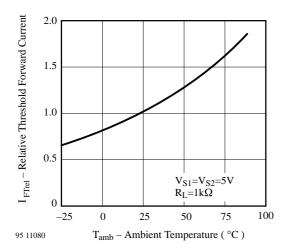


Figure 6. Rel. Thresh. Forw. Current vs. Ambient Temperature

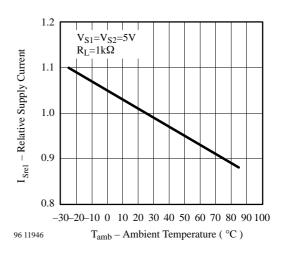
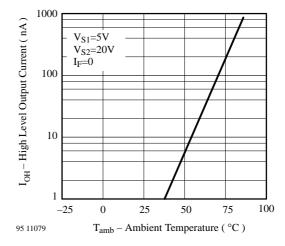
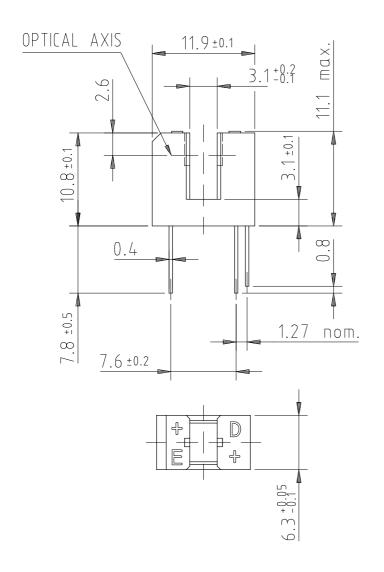
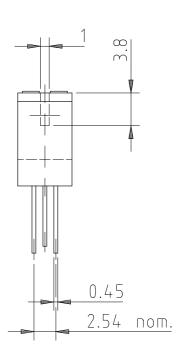
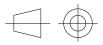
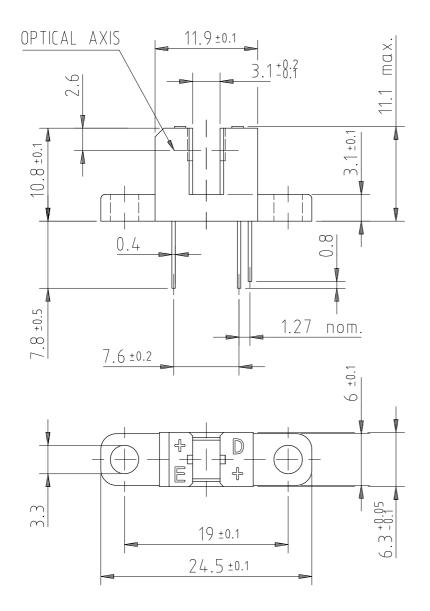


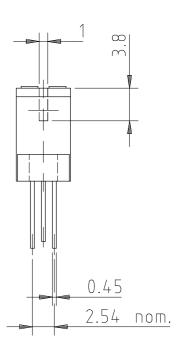
Figure 7. Relative Supply Current vs. Ambient Temperature

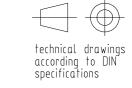





Figure 8. High Level Output Current vs. Ambient Temp.

Dimensions of TCSS1100 in mm




96 12096


technical drawings according to DIN specifications

Dimensions of TCSS2100 in mm

96 12097

Ozone Depleting Substances Policy Statement

It is the policy of **TEMIC TELEFUNKEN microelectronic GmbH** to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

TEMIC TELEFUNKEN microelectronic GmbH semiconductor division has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

TEMIC can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

TEMIC TELEFUNKEN microelectronic GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423