
���������	

��� TN214

Connecting the Rabbit 2000
to a Garmin GPS25 Receiver

Introduction

This technical note covers the hardware issues of connecting the Rabbit 2000 chip to a
GPS (Global Positioning System) receiver and the software routines for decoding the data
from a GPS receiver. The receiver used in this example is a Garmin GPS25-LVC or
GPS25-LVS.

GPS Hardware and Connections

All standard GPS hardware communicates using the NMEA-1803 standard for marine
electronics devices. Most GPS hardware also supports a variety of additional proprietary
communications protocols, but NMEA-1803 is the ubiquitous standard that is supported
by the software libraries described below.

The NMEA-1803 standard specifies that communications between devices is through a
standard serial link running at 4800 bps. Both versions of the GPS25 use this standard.
The GPS25-LVC transmits at CMOS levels (0 V, 5 V), and the GPS25-LVS transmits at
both CMOS and RS-232 levels.

• If you are using a Jackrabbit board, you will need to use the RS-232 line with the
GPS25-LVS. Consult the pinout for the receiver and connect TXD1 on the GPS
receiver to RXC on the Jackrabbit board.

• If you are using a RabbitCore module, you can use the CMOS line from either receiver.
Connect the NMEA output pin on the receiver to PC3 on the RabbitCore board.

When working with GPS systems, one important factor to keep in mind is that they often
will not work properly indoors. If you have access to a portable computer, you can test the
GPS system outside or in a car. Both the Jackrabbit and the RabbitCore Prototyping Boards
have voltage regulators that will allow you to power the board and the GPS receiver from a
car’s cigarette lighter. You will need to build an adapter to route power from the cigarette
lighter port to the Prototyping Board’s power header. Once this is done, you can use the
regulated power on the Prototyping Board (GND and Vcc) to power the receiver.
022-0060 Rev. A 1

NMEA-1803 Protocol

The NMEA-1803 protocol consists of ASCII “sentences” sent repeatedly by the GPS
receiver. These sentences always start with the character $ and end with a carriage
return/newline sequence. The format is:

${talker id}{sentence id},{comma separated list of fields...}{optional
checksum}\r\n

The talker id is a two-letter code that indicates the type of device sending the message.
This will always be “GP” when reading data from a GPS receiver.

The sentence id is a three-letter code that indicates the type of information being sent and
the format of the following data fields. The different sentence types that can be parsed by
the Rabbit 2000 GPS library are:

• GGA

• GLL

• RMC

These are common sentence types supported by almost all GPS systems.

All these sentence formats provide the geographical location, which can be extracted
using the function gps_get_position. The RMC type contains full UTC time informa-
tion, which can be parsed by the gps_get_utc function. Both functions are available in
the GPS.LIB library described in the next section.
022-0060 Rev. A 2

Software

A GPS utility library has been written to provide common processing functions to the user.
The first set of functions parses NMEA-1803 sentences and extracts the desired fields
from them.

Retrieves geographic position information from an NMEA-1803 sentence and fills in a GPSPosition
structure. The format of a GPSPosition structure is:

typedef struct {
 int lat_degrees;
 int lon_degrees;
 float lat_minutes;
 float lon_minutes;
 char lat_direction;
 char lon_direction;
} GPSPosition;
lat_direction can be "N" or "S"
lon_direction can be "E" or "W"

Parameters

newpos—a GPSPosition struct to fill with the relevant fields in the NMEA-1803 sentence.

sentence—the NMEA-1803 sentence from the GPS receiver to be parsed

Return Value

 0—success
–1—parsing error
–2—sentence marked invalid

Parses an RMC sentence for the UTC time and date, and loads it into a tm structure.

Parameters

newtime—a tm structure (see mktm in the Dynamic C Premier User’s Manual) that will be filled with
the time and date reported in the sentence.

sentence—the NMEA-1803 sentence from the GPS receiver to be parsed. This must be an RMC sen-
tence.

Return Value

 0—success
–1—parsing error
–2—sentence marked invalid

int gps_get_position(GPSPositon *newpos, char *sentence);

int gps_get_utc(struct tm *newtime, char *sentence);
022-0060 Rev. A 3

Calculating distance over land given a pair of geographical coordinates is a nontrivial cal-
culation, and so a utility function is provided in the library to do this calculation.

Calculates the distance over the surface of the earth between two geographical points. Uses a spherical
model of the earth with a radius of 6371km.

Parameters

a and b are the two geographical coordinates between which the distance is to be calculated. They are
the same structures used by gps_get_position.

Return Value

The distance in kilometers between the two points.

Example

The following is an example of a program receiving data from a GPS. It assumes that a
GPS receiver is connected to Serial Port C on the Rabbit 2000 chip.

/**************************
gps_test.c
Test out GPS routines
**************************/

#use "gps.lib"
#define CINBUFSIZE 127
#define COUTBUFSIZE 127
#define MAX_SENTENCE 100

// names of days of week
const char dayname[7][4] = {"Sun","Mon","Tue","Wed","Thu","Fri","Sat"};
const char monthname[12][4] = {"Jan", "Feb", "Mar", "Apr", "May", "Jun",
 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};

GPSPosition current_pos;
struct tm current_time;

main() {
 char sentence[MAX_SENTENCE];
 int input_char;
 int string_pos;
 char dir_string[2];

 serCopen(4800);
 string_pos = 0;
 dir_string[1] = 0;

float gps_ground_distance(GPSPosition *a, GPSPosition *b);
022-0060 Rev. A 4

 while(1) {
 input_char = serCgetc();
 if(input_char == ’\r’ || input_char == ’\n’) {
 sentence[string_pos] = 0; // add null
 printf("%s\n", sentence);
 if(gps_get_position(¤t_pos, sentence) == 0) {
 dir_string[0] = current_pos.lat_direction;
 printf("Latitude: %d %f’ %s\n", current_pos.lat_degrees,
 current_pos.lat_minutes, dir_string);
 dir_string[0] = current_pos.lon_direction;
 printf("Longitude: %d %f’ %s\n", current_pos.lon_degrees,
 current_pos.lon_minutes, dir_string);
 }
 if(gps_get_utc(¤t_time, sentence) == 0) {
 printf("UTC: %s %d-%s-%d %02d:%02d:%02d\n",
 dayname[current_time.tm_wday], current_time.tm_mday,
 monthname[current_time.tm_mon - 1],
 1900 + current_time.tm_year, current_time.tm_hour,
 current_time.tm_min, current_time.tm_sec);
 }
 string_pos = 0;
 }
 else if(input_char > 0) {
 sentence[string_pos] = input_char;
 string_pos++;
 if(string_pos == MAX_SENTENCE)
 string_pos = 0; // reset string if too large
 }
 }
}

References

There is a large amount of information about GPS and the NMEA-1803 standard available
on the Web.
�������
�	

��
�������������
������������������	�������

���

��� �!�"
#$�$�"$"$
%�&�!�"
#$�"���'�

��(�����)�*��
)++,,, -,���� .�/

022-0060 Rev. A 5

	TN214
	Connecting the Rabbit 2000 to a Garmin GPS25 Receiver
	Introduction
	GPS Hardware and Connections
	NMEA-1803 Protocol
	Software
	Example
	References

