
���������	

��� AN213

Rabbit 2000 Serial Port Software

Introduction

Serial interfaces are among the oldest and most widely used methods for machine commu-
nication. The basic concept is to take the individual bits of a set of data and transmit them
over a single digital channel one after the other. Many serial interfaces rely on clocking
channels to coordinate the sending of each individual bit. These interfaces are referred to
as synchronous interfaces. However, the majority of serial interfaces simply transmit bits
at precise time intervals. The receiver can then sample the transmission line at these same
intervals and retrieve the bits. These interfaces are known as an asynchronous serial inter-
face. The most common asynchronous serial interfaces are RS-232 and RS-485. All of
these interfaces use the same data format and differ only in their electrical specifications.
This data format, known as SPI (serial peripheral interface) consists of a start bit (low, 0)
followed by 7 to 9 data bits, and 1 or 2 stop bits (high, 1). When the communication line is
idle, it is in the high (1) state. Therefore, the stop bits can be thought of as minimum idle
time between transmitted bytes. In most cases only 7 or 8 of the data bits contain actual
data. The extra bit, when present, is used as either a parity check bit or a frame signalling
bit in a packet protocol. The Rabbit serial driver can be configured to use most of these
options.

Two flavors of serial port support software are available for the Rabbit: circular-buffer
routines and packet drivers. Circular-buffer routines for all four Rabbit serial ports are
included in all Dynamic C releases. At the time of this writing, the packet driver routines
are only implemented for Serial Port D and are only available as beta versions, but should
be available soon for all ports in regular Dynamic C releases. The packet driver library and
a sample program using are available in the zip file accompanying this Technical Note.
022-0059 Rev. A 1

Circular Buffer Implementation

The circular-buffer serial routines are best used with RS-232. The interrupt times for the
serial-driver interrupt service request are approximately 500 cycles for transmitting a byte
and 400 cycles for receiving a byte. The serial driver uses circular buffers to temporarily
hold data that are ready to be transmitted and data that have been received but not pro-
cessed. The default size of these buffers is set to 31 bytes. These sizes can be changed
using the macros XINBUFSIZE and XOUTBUFSIZE, where X refers to the serial port (A, B,

C or D). Valid sizes for the buffers are 2n - 1 (e.g., 15, 31, 63, 127).

Using Non-Cofunction Routines

The standard send and receive routines in the serial library will not return until finished, or
when a timeout occurs in the case of receive routines. These functions rely on global data
and are non-reentrant. Therefore, when using them with uC/OS-II or another preemptive
multitasker, only one process at a time will be able to use a particular serial port. The serial
port library is otherwise compatible with uC/OS-II. Here is a listing of the non-cofunction
send and receive routines. Complete descriptions for them can be found in the Dynamic C
Premier User’s Manual.

• serXgetc

• serXread

• serXpeek

• serXputc

• serXputs

• serXwrite

(In each of the above, X is one of A, B, C or D, corresponding to the desired serial port.)

Using Cofunction Routines

A full set a cofunction versions exists for the serial send and receive routines that will
yield to other tasks while waiting for an operation to complete. The receive functions use
timeouts to exit if no characters are received after a set amount of time. These functions
are also considered non-reentrant with respect to preemptive multitaskers, and so only a
single task is able to have access to a particular port. Here is a listing of the cofunction
send and receive routines. Complete descriptions for them can be found in the Dynamic C
Premier User’s Manual.

• cof_serXgetc

• cof_serXgets

• cof_serXread

• cof_serXputc

• cof_serXputs

• cof_serXwrite
(where X is A, B, C or D)
022-0059 Rev. A 2

Parity and Stop Bits

The serial drivers can be configured to use any combination of:

• 7 or 8 bit data

• even, odd, or no parity

• 1 or 2 stop bits

The default format is 8 data bits, no parity, and one stop bit. This adds up to 9 bits. If a
10th bit is required, some special processing is done to transmit it. If the 9th bit is low, the
10th bit is handled in hardware by writing the byte to a special alternate port. If the 9th bit
is high, a special delay scheme is used. The normal stop bit is used as the 9th high data bit,
and the transmitter is disabled immediately after the byte is sent to create an idle state for
one additional byte time. This creates a high 9th bit followed by a long stop bit. Unfortu-
nately, this slows down the data throughput rate and can cause problems with hardware
that is sensitive to gaps in the data stream. The serial packet library described later pro-
vides a solution to this for half-duplex communication.

Here is a listing of the mode configuration functions. Complete descriptions for them can
be found in the Dynamic C Premier User’s Manual.

• serXparity

• serXdatabits
(where X is A, B, C or D)

Flow Control

There are often times when a system is unable to process incoming data at the rate it is
being received. Buffers can handle short lapses in processing capability, but they will fill
up if the receiver is consistently unable to keep up. Methods for a receiver to signal when
it is able to receive data are know as flow control. The two main methods for flow control
are XON/XOFF and a hardware-based method. The XON/XOFF method designates two
byte values to be the XON and XOFF signals respectively. When the receiver is unable to
process any more data, it transmits an XOFF control byte. When it is once again able to
receive data, it sends an XON byte. Obviously, the data being sent must not include these
control bytes. Hardware flow control relies on additional signal lines (RTS and CTS)
between the two systems to indicate when data can be sent.

Flow Control Implementation

The Rabbit serial driver implements hardware flow control. The driver is configured as a
DTE (data terminal equipment), meaning RTS is an output asserted by the Rabbit when it
is ready for more data, and CTS is an input that monitors the ready state of the system the
Rabbit is connected to. Flow control lines (RTS/CTS) are currently configured using
#define macros to specify which port and bit a particular line will use. Here is an exam-
ple of configuring RTS/CTS for Serial Port D.

#define SERD_RTS_PORT PDBR
#define SERD_RTS_SHADOW PBDRShadow
#define SERD_RTS_BIT 6
#define SERD_CTS_PORT PBDR
#define SERD_CTS_BIT 5
022-0059 Rev. A 3

The two functions serXflowcontrolOn() and serXflowcontrolOff() are used
to enable or disable hardware flow control.

Achievable Baud Rates

Appendix Appendix:, “Baud Rate Speed Tests,” presents the results of some speed tests
with two different speed Rabbit boards under different conditions. The highest practical
standard baud rates depend on factors such as the interrupt-latency effects of other inter-
rupt-driven processes.

Packet Library Implementation

As of Dynamic C 7.03, the packet driver functions are available only for Serial Port D,
and only as a beta version. The code is in the zip file accompanying this Technical Note.
To use the packet driver, PACKET.LIB should be listed in the file LIB.DIR.

The Rabbit packet driver handles transmitting and receiving a variety of data packet for-
mats over a half-duplex or a full-duplex communication channel. The driver can be easily
adapted to use any type of transceiver hardware by writing custom routines to handle
switching between transmit and receive modes. There are three basic types of packets that
the library handles.

• Gap packets—packets that are separated by gaps in transmission of a set length

• 9th bit packets—packets that use the 9th bit to mark the first byte in a packet

• Start character packets—packets that use a special byte to mark the beginning of a
packet

The gap packet and special character modes can also be configured to use the 9th bit for
parity or as an extra stop bit. A benefit of the half-duplex restriction is that the driver
interrupt service request is able to raise the baud rate temporarily when simulating a high
9th data bit. This allows for the stop bits to be closer to a true bit time rather than the
length of a whole byte. Since the transmitter and receiver logic for a port both use the
same baud rate counter, bytes cannot be received properly while this is occurring, there-
fore only half-duplex communication is allowed.

Spillover Buffer

The spillover buffer is a byte array used internally by the packet driver to store bytes when
there is no user-supplied receive buffer available. Once a complete packet has been
received, no further bytes will be written into the current receive buffer. The system will
instead put them into the spillover buffer. When the next call to pktXreceive is made,
the spillover buffer contents will be copied into the new receive buffer. The size of the
spill buffer is set at compile time with the macro XPKTBUFSIZE, where X is replaced with
the serial port designation (A,B,C, or D).

User-Defined Functions

Since the packet library is meant to be used with a variety of transceiver hardware, certain
functions must be defined by the user: pktXinit(), pktXrx(), and pktXtx() (where
X is A,B,C, or D). Each takes no arguments and returns nothing.
022-0059 Rev. A 4

The sample code accompanying this Technical Note implements pktDinit(), pktDXrx(),
and pktDtx(), and will work on a Jackrabbit board or a RabbitCore RCM2000 module.

• pktXinit()—Initializes the communication hardware. Called inside pktXopen().
This function may be written in C.

• pktXrx()—Sets the hardware to receive data. This must be written in assembly. Any
registers besides the 8-bit accumulator A must be preserved first, and restored before
returning.

• pktXtx()—Sets the hardware to transmit data. This must be written in assembly. The
rules for register usage are the same as for pktXrx().

Function Listing

For these functions, X is one of A, B, C, or D. As of Dynamic C 7.03, these functions are
available only for Serial Port D, and only as a beta version. The code is in the zip file
accompanying this Technical Note.

The open function sets up the isr vector and the baud rate. The minimum baud rate is PCLK / 32 / 256 / 256,
and the maximum baud rate is PCLK / 32. Baud rates below PCLK / 32 / 256 (below 1800 if the crystal
is 7.372 MHz with clock doubled for PCLK = 14.744 MHz) modify the A1 timer, affecting the B timer.

Parameters

baud—desired baud rate in bits per second

mode—type of packet scheme used. Valid options are:

PKT_GAPMODE
PKT_9BITMODE
PKT_CHARMODE

options—Further specification for the packet scheme. The value depends on the mode used:

gap mode - minimum gap size (in byte times)

9bit mode - type of 9-bit protocol

PKT_RABBITSTARTBYTE

The first byte in a packet has a low 9th bit, all other bytes are 8 bit length.

PKT_LOWSTARTBYTE

The first byte in a packet has a low 9th bit, all other bytes have a high 9th bit.

PKT_HIGHSTARTBYTE

The first byte in a packet has a high 9th bit, all other bytes have a low 9th bit.

char mode - character marking start of packet

test_packet—pointer to function that tests for completeness of a packet. The function should return
1 if the packet is complete, or 0 if more data should be read in. For gap mode the test function is not used
and should be set to NULL.

Return Value

1—The baud rate set on the Rabbit 2000 is the same as the input baud rate.
0—The baud rate set on the Rabbit 2000 does not match the input baud rate.

int pktXopen (long baud, int mode, char options,
 int (*test_packet)());
022-0059 Rev. A 5

Configures the driver to use the 9th bit as either a parity bit or a second stop bit. This can only be used
with “gap” packets and “start character” packets.

Parameters

mode—the specific use of the 9th bit:

PKT_NOPARITY—don’t use the 9th bit for anything special (8N1 format)

PKT_OPARITY—Odd-parity bit (8O1 format)

PKT_EPARITY—Even-parity bit (8E1 format)

PKT_TWOSTOP—Use the ninth bit as an extra stop (8N2 format)

Return Value

None

Disables the serial port interrupt service routine.

Parameters

None.

Return Value

1

Sends a packet. If there is already a packet being transmitted, the function will block until that packet is
done. Otherwise, the function will return immediately

Parameters

send_buffer—buffer containing the packet to be sent

buffer_length—the length of the send buffer

delay—the number of byte times to wait before sending the packet.

The cofunction version of pktXsend(). The function will return when the given packet is done trans-
mitting.

Parameters

send_buffer—buffer containing the packet to be sent

buffer_length—the length of the send buffer

delay—the number of byte times to wait before sending the packet.

void pktXsetParity(char mode);

int pktXclose ();

void pktXsend (void *send_buffer, int buffer_length,

 char delay);

void cof_pktXsend (void *send_buffer, int buffer_length,
 char delay);
022-0059 Rev. A 6

Prepares the driver to receive a packet. This function will always return immediately, however the buffer
will be in use by the system until pktXreceiveDone() (see below) returns true.

Parameters

buffer—a byte array to store the incoming packet

buffer_length—the length of the buffer

The cofunction version of pktXreceive(). The function will return when the given packet is done
transmitting. Prepares the driver to receive a packet. This function will return once a complete packet has
been read into the buffer.

Parameters

buffer—a byte array to store the incoming packet

buffer_length—the length of the buffer

Return Value

The number of bytes in the received packet

Returns true is a packet is currently being transmitted

Parameters

None

Return Value

1—a packet is being transmitted
0—nothing is being transmitted

Returns true if a complete packet is in the current receive buffer.

Parameters

None

Return Value

1—A complete packet has been received
0—The receive buffer is not ready

void pktXreceive (void *buffer, int buffer_length);

int cof_pktXreceive (void *buffer, int buffer_length);

int pktXsending ();

int pktXreceiveDone ();
022-0059 Rev. A 7

Returns a byte of error flags, with bits set for any errors that occurred since the last time this function was
called. Any bits set will be automatically cleared when this function is called so that a particular error
will only be reported once. The error flags are checked with error flag masks to determine which errors
occurred.

Error flag masks:

PKT_BUFFEROVERFLOW—the received packet is too large for the given buffer

PKT_RXOVERRUN—the receive register could not be read before another byte was received

PKT_PARITYERROR—a byte was received with incorrect parity

PKT_SPILLOVERFLOW—the spillover buffer filled up before another receive buffer became available

Parameters

None

Return Value

The error flags byte.

char pktXgetErrors ();
022-0059 Rev. A 8

Appendix: Baud Rate Speed Tests

Four different tests using the RS-232 circular buffer functions were run on both 14 MHz
and 29 MHz Jackrabbit boards, with four variations on each test. The first test was to
transmit blocks of data continuously and without any gaps in the outgoing data stream.
The baud rates listed in the tables below are the maximum rates at which this is possible.

The second test was like the first, except that characters were transmitted one at a time by
the test program using serXputc(). The baud rates listed are the highest speeds that do
not produce gaps between bytes.

The third test received a continuous stream of data in blocks. The baud rate in the table is
the highest at which overruns of the hardware receive buffer did not occur.

The fourth test was identical to the third except that data was received a character at a
time.

Each test was performed under four different sets of conditions. In each, hardware flow
control (FC) was either on or off, and the test was performed in either debug mode or no
debug mode (run mode).

Table 1. Baud Rate Limits for Serial Tests (14 MHz Rabbit 2000)

no FC,
no debug

no FC,
debug

with FC,
no debug

with FC,
debug

Block Transmit Test 230,400 bps 230,400 bps 115,200 bps 115,200 bps

Character Transmit Test 115,200 bps 57,600 bps 115,200 bps 57,600 bps

Block Receive Test 230,400 bps 57,600 bps 230,400 bps 57,600 bps

Character Receive Test 230,400 bps 57,600 bps 230,400 bps 57,600 bps

Table 2. Baud Rate Limits for Serial Tests (29 MHz Rabbit 2000)

no FC,
no debug

no FC,
debug

with FC,
no debug

with FC,
debug

Block Transmit Test 460,800 bps 230,400 bps 230,400 bps 230,400 bps

Character Transmit Test 230,400 bps 115,200 bps 115,200 bps 115,200 bps

Block Receive Test 460,800 bps 57,600 bps 460,800 bps 57,600 bps

Character Receive Test 460,800 bps 57,600 bps 460,800 bps 57,600 bps
022-0059 Rev. A 9

�������
�	

��
�������������
������������������	�������

���

��� �!�"
#$�$�"$"$
%�&�!�"
#$�"���'�

��(�����)�*��
)++,,, -,���� .�/

022-0059 Rev. A 10

	AN213
	Rabbit 2000 Serial Port Software
	Introduction
	Circular Buffer Implementation
	Using Non-Cofunction Routines
	Using Cofunction Routines
	Parity and Stop Bits
	Flow Control
	Flow Control Implementation
	Achievable Baud Rates

	Packet Library Implementation
	Spillover Buffer
	User-Defined Functions
	Function Listing

