Tecbnical )
Note AN213

Rabbit 2000 Serial Port Software

I ntroduction

Serial interfaces are among the oldest and most widely used methods for machine commu-
nication. The basic concept is to take the individual bits of a set of data and transmit them
over asingle digital channel one after the other. Many serial interfaces rely on clocking
channelsto coordinate the sending of each individual bit. These interfaces are referred to
as synchronous interfaces. However, the majority of serial interfaces smply transmit bits
at precise time intervals. The receiver can then sample the transmission line at these same
intervals and retrieve the bits. These interfaces are known as an asynchronous serial inter-
face. The most common asynchronous serial interfaces are RS-232 and RS-485. All of
these interfaces use the same data format and differ only in their electrical specifications.
This dataformat, known as SPI (serial peripheral interface) consists of a start bit (low, 0)
followed by 7 to 9 data bits, and 1 or 2 stop bits (high, 1). When the communication lineis
idle, it isin the high (1) state. Therefore, the stop bits can be thought of as minimum idle
time between transmitted bytes. In most cases only 7 or 8 of the data bits contain actual
data. The extrabit, when present, is used as either a parity check bit or aframe signalling
bit in a packet protocol. The Rabbit serial driver can be configured to use most of these
options.

Two flavors of serial port support software are available for the Rabbit: circular-buffer
routines and packet drivers. Circular-buffer routines for al four Rabbit seria ports are
included in all Dynamic C releases. At the time of thiswriting, the packet driver routines
are only implemented for Serial Port D and are only available as beta versions, but should
be available soon for all portsin regular Dynamic C releases. The packet driver library and
asample program using are available in the zip file accompanying this Technical Note.

022-0059 Rev. A 1



Circular Buffer Implementation

The circular-buffer serial routines are best used with RS-232. The interrupt times for the
serial-driver interrupt service request are approximately 500 cycles for transmitting a byte
and 400 cyclesfor receiving abyte. The seria driver uses circular buffersto temporarily
hold data that are ready to be transmitted and data that have been received but not pro-
cessed. The default size of these buffersis set to 31 bytes. These sizes can be changed
using the macros XI NBUFSI ZE and XOUTBUFSI ZE, where X refersto the serial port (A, B,

C or D). Valid sizesfor the buffersare 2" - 1 (e.g., 15, 31, 63, 127).
Using Non-Cofunction Routines

The standard send and receive routinesin the serial library will not return until finished, or
when atimeout occursin the case of receive routines. These functions rely on global data
and are non-reentrant. Therefore, when using them with uC/OS-11 or another preemptive
multitasker, only one process at atimewill be ableto use a particular serial port. The serial
port library is otherwise compatible with uC/OS-11. Hereis alisting of the non-cofunction
send and receive routines. Complete descriptions for them can be found in the Dynamic C
Premier User’s Manual.

* serXgetc

e ser Xread

* ser Xpeek

e serXputc

e ser Xputs

e serXwite

(In each of the above, X isone of A, B, C or D, corresponding to the desired serial port.)
Using Cofunction Routines

A full set a cofunction versions exists for the serial send and receive routines that will
yield to other tasks while waiting for an operation to complete. The receive functions use
timeouts to exit if no characters are received after a set amount of time. These functions
are also considered non-reentrant with respect to preemptive multitaskers, and so only a
single task is able to have access to a particular port. Here is alisting of the cofunction
send and receive routines. Complete descriptions for them can be found in the Dynamic C
Premier User’s Manual.

e cof serXgetc
e cof _serXgets
e cof ser Xread
e cof serXputc
e cof _serXputs

e cof _serXwrite
(where XisA, B, Cor D)

022-0059 Rev. A 2



Parity and Sop Bits
The serial drivers can be configured to use any combination of:

* 7or 8bit data
e even, odd, or no parity
e 1or2stop bits

The default format is 8 data bits, no parity, and one stop bit. This adds up to 9 bits. If a
10th bit isrequired, some special processing isdoneto transmit it. If the 9th bit islow, the
10th bit is handled in hardware by writing the byte to a special alternate port. If the Sth bit
ishigh, aspecia delay schemeisused. The normal stop bit is used as the 9th high data bit,
and the transmitter is disabled immediately after the byte is sent to create an idle state for
one additional byte time. This creates a high 9th bit followed by along stop bit. Unfortu-
nately, this slows down the data throughput rate and can cause problems with hardware
that is sensitive to gaps in the data stream. The serial packet library described later pro-
vides a solution to this for half-duplex communication.

Hereisalisting of the mode configuration functions. Complete descriptions for them can
be found in the Dynamic C Premier User’s Manual.

e serXparity

e serXdatabits
(where XisA, B, Cor D)

Flow Control

There are often times when a system is unable to process incoming data at the rateit is
being received. Buffers can handle short lapses in processing capability, but they will fill
up if the receiver is consistently unable to keep up. Methods for areceiver to signal when
it isableto receive dataare know as flow control. The two main methods for flow control
are XON/XOFF and a hardware-based method. The XON/XOFF method designates two
byte values to be the XON and X OFF signal s respectively. When the receiver is unable to
process any more data, it transmits an XOFF control byte. When it is once again able to
receive data, it sends an XON byte. Obvioudly, the data being sent must not include these
control bytes. Hardware flow control relies on additional signal lines (RTS and CTS)
between the two systems to indicate when data can be sent.

Flow Control Implementation

The Rabbit serial driver implements hardware flow control. The driver is configured as a
DTE (datatermina equipment), meaning RTS is an output asserted by the Rabbit when it
isready for more data, and CTS is an input that monitors the ready state of the system the
Rabbit is connected to. Flow control lines (RTS/CTYS) are currently configured using
#def i ne macros to specify which port and bit a particular line will use. Here is an exam-
ple of configuring RTS/CTSfor Seria Port D.

#defi ne SERD RTS PORT PDBR

#defi ne SERD RTS SHADOW PBDRShadow
#define SERD RTS BIT 6

#defi ne SERD_CTS_PORT PBDR

#define SERD CTS BIT 5

022-0059 Rev. A 3



Thetwo functionsser Xf | owcont rol On( ) andser Xfl owcontrol Off () areused
to enable or disable hardware flow control.

Achievable Baud Rates

Appendix Appendix:, “Baud Rate Speed Tests,” presents the results of some speed tests
with two different speed Rabbit boards under different conditions. The highest practical

standard baud rates depend on factors such as the interrupt-latency effects of other inter-
rupt-driven processes.

Packet Library Implementation

Asof Dynamic C 7.03, the packet driver functions are available only for Serial Port D,
and only as a beta version. The code isin the zip file accompanying this Technical Note.
To use the packet driver, PACKET. LI B should belisted in thefileLI B. DI R.

The Rabbit packet driver handles transmitting and receiving a variety of data packet for-
mats over a half-duplex or afull-duplex communication channel. The driver can be easily
adapted to use any type of transceiver hardware by writing custom routines to handle
switching between transmit and receive modes. There are three basic types of packets that
the library handles.

» Gap packets—packets that are separated by gaps in transmission of a set length
» Oth bit packets—packets that use the 9th bit to mark the first byte in a packet

o Start character packets—packets that use a special byte to mark the beginning of a
packet

The gap packet and special character modes can also be configured to use the 9th bit for
parity or as an extrastop bit. A benefit of the half-duplex restriction is that the driver
interrupt service request is able to raise the baud rate temporarily when simulating a high
9th data bit. This allows for the stop bitsto be closer to atrue bit time rather than the
length of awhole byte. Since the transmitter and receiver logic for a port both use the
same baud rate counter, bytes cannot be received properly while thisis occurring, there-
fore only half-duplex communication is alowed.

Spillover Buffer

The spillover buffer isabyte array used internally by the packet driver to store bytes when
there is no user-supplied receive buffer available. Once a complete packet has been
received, no further byteswill be written into the current receive buffer. The system will
instead put them into the spillover buffer. When the next call to pkt Xr ecei ve ismade,
the spillover buffer contents will be copied into the new receive buffer. The size of the
spill buffer is set at compile time with the macro XPKTBUFSI ZE, where X isreplaced with
the serial port designation (A,B,C, or D).

User-Defined Functions

Since the packet library is meant to be used with avariety of transceiver hardware, certain
functions must be defined by the user: pkt Xi ni t (), pkt Xrx(), and pkt Xt x() (where
XisA,B,C, or D). Each takes no arguments and returns nothing.

022-0059 Rev. A 4



The sample code accompanying this Technical Note implementspkt Di ni t (), pkt DXr x(),
and pkt Dt x() , and will work on a Jackrabbit board or a RabbitCore RCM 2000 module.

e pkt Xi ni t () —Initializes the communication hardware. Called inside pkt Xopen() .
This function may be writtenin C.

* pkt Xr x( ) —Sets the hardware to receive data. This must be written in assembly. Any
registers besides the 8-bit accumulator A must be preserved first, and restored before
returning.

* pkt Xt x( ) —Sets the hardware to transmit data. This must be written in assembly. The
rules for register usage are the same as for pkt Xr x() .

Function Listing

For these functions, Xisone of A, B, C, or D. Asof Dynamic C 7.03, these functions are
available only for Serial Port D, and only as a betaversion. The codeisinthezip file
accompanying this Technical Note.

i nt pktXopen (long baud, int node, char options,
int (*test _packet)());

The open function sets up the isr vector and the baud rate. The minimum baud rateis PCLK / 32/ 256 / 256,
and the maximum baud rate is PCLK / 32. Baud rates below PCLK / 32 / 256 (below 1800 if the crystal
is7.372 MHz with clock doubled for PCLK = 14.744 MHz) maodify the A1 timer, affecting the B timer.

Parameters

baud—desired baud rate in bits per second
node—type of packet scheme used. Valid options are:

PKT_GAPMODE
PKT_9BI TMODE
PKT_CHARMODE

opt i ons—Further specification for the packet scheme. The value depends on the mode used:
gap mode - minimum gap size (in byte times)
9bit mode - type of 9-bit protocol
PKT_RABBI TSTARTBYTE
Thefirst byte in a packet has alow 9th bit, all other bytes are 8 bit length.
PKT_LOWSTARTBYTE
Thefirst byte in a packet has alow 9th bit, al other bytes have a high 9th bit.
PKT_HI GHSTARTBYTE
Thefirst byte in a packet has a high 9th hit, al other bytes have alow 9th bit.
char mode - character marking start of packet

t est _packet —pointer to function that tests for completeness of a packet. The function should return
1if the packet is complete, or 0 if more data should be read in. For gap mode the test function is not used
and should be set to NULL.

Return Value

1—The baud rate set on the Rabbit 2000 is the same as the input baud rate.
0—The baud rate set on the Rabbit 2000 does not match the input baud rate.

022-0059 Rev. A 5



voi d pkt Xset Parity(char node);
Configures the driver to use the 9th bit as either a parity bit or a second stop bit. This can only be used
with “gap” packets and “start character” packets.
Parameters
node—the specific use of the 9th bit:
PKT_NOPARI TY—don't use the 9th bit for anything special (8N1 format)
PKT_OPARI TY—Odd-parity bit (801 format)
PKT_EPARI TY—Even-parity bit (8E1 format)
PKT_TWOSTOP—Use the ninth bit as an extra stop (8N2 format)
Return Value

None

i nt pktXcl ose ();

Disables the serial port interrupt service routine.
Parameters
None.
Return Value
1
voi d pkt Xsend (void *send_buffer, int buffer_I|ength,
char del ay);
Sends a packet. If thereis already a packet being transmitted, the function will block until that packet is
done. Otherwise, the function will return immediately
Parameters
send_buf f er —buffer containing the packet to be sent
buf f er _| engt h—the length of the send buffer
del ay—the number of byte timesto wait before sending the packet.

voi d cof _pkt Xsend (void *send _buffer, int buffer_Iength,
char del ay);

The cofunction version of pkt Xsend() . The function will return when the given packet is done trans-
mitting.
Parameters
send_buf f er —buffer containing the packet to be sent
buf f er _| engt h—the length of the send buffer

del ay—the number of byte timesto wait before sending the packet.

022-0059 Rev. A 6



voi d pkt Xreceive (void *buffer, int buffer_ | ength);

Prepares the driver to receive a packet. This function will always return immediately, however the buffer
will bein use by the system until pkt Xr ecei veDone() (seebelow) returns true.

Parameters
buf f er —abyte array to store the incoming packet
buf f er _| engt h—the length of the buffer
i nt cof pktXreceive (void *buffer, int buffer_ | ength);

The cofunction version of pkt Xr ecei ve() . The function will return when the given packet is done
transmitting. Prepares the driver to receive apacket. This function will return once acompl ete packet has
been read into the buffer.

Parameters

buf f er —abyte array to store the incoming packet
buf f er _| engt h—the length of the buffer

Return Value
The number of bytesin the received packet
i nt pktXsending ();
Returnstrueis a packet is currently being transmitted
Parameters
None
Return Value

1—apacket is being transmitted
0—nothing is being transmitted

i nt pktXreceiveDone ();

Returnstrueif acomplete packet isin the current receive buffer.
Parameters

None
Return Value

1—A complete packet has been received
0—The receive buffer is not ready

022-0059 Rev. A 7



char pktXgetErrors ();

Returns abyte of error flags, with bits set for any errorsthat occurred since thelast time this function was
called. Any bits set will be automatically cleared when this function is called so that a particular error
will only be reported once. The error flags are checked with error flag masks to determine which errors
occurred.

Error flag masks:
PKT_BUFFEROVERFLOW—the received packet istoo large for the given buffer
PKT_RXOVERRUN—the receive register could not be read before another byte was received
PKT_PARI TYERROR—a byte was received with incorrect parity
PKT_SPI LLOVERFLOW—the spillover buffer filled up before another receive buffer became available
Parameters

None
Return Value

The error flags byte.

022-0059 Rev. A 8



Appendix: Baud Rate Speed Tests

Four different tests using the RS-232 circular buffer functions were run on both 14 MHz
and 29 MHz Jackrabbit boards, with four variations on each test. The first test wasto
transmit blocks of data continuously and without any gaps in the outgoing data stream.
The baud rates listed in the tables below are the maximum rates at which thisis possible.

The second test was like the first, except that characters were transmitted one at atime by
the test program using ser Xput ¢ () . The baud rates listed are the highest speeds that do
not produce gaps between bytes.

The third test received a continuous stream of data in blocks. The baud ratein the tableis
the highest at which overruns of the hardware receive buffer did not occur.

The fourth test was identical to the third except that data was received a character at a
time.

Each test was performed under four different sets of conditions. In each, hardware flow
control (FC) was either on or off, and the test was performed in either debug mode or no
debug mode (run mode).

Table 1. Baud Rate Limits for Serial Tests (14 MHz Rabhit 2000)

no FC, no FC, with FC, with FC,
no debug debug no debug debug
Block Transmit Test 230,400 bps 230,400 bps 115,200 bps 115,200 bps
Character Transmit Test 115,200 bps 57,600 bps 115,200 bps 57,600 bps
Block Receive Test 230,400 bps 57,600 bps 230,400 bps 57,600 bps
Character Receive Test 230,400 bps 57,600 bps 230,400 bps 57,600 bps

Table 2. Baud Rate Limits for Serial Tests (29 MHz Rabhit 2000)

no FC, no FC, with FC, with FC,
no debug debug no debug debug
Block Transmit Test 460,800 bps 230,400 bps 230,400 bps 230,400 bps
Character Transmit Test 230,400 bps 115,200 bps 115,200 bps 115,200 bps
Block Receive Test 460,800 bps 57,600 bps 460,800 bps 57,600 bps
Character Receive Test 460,800 bps 57,600 bps 460,800 bps 57,600 bps

022-0059 Rev. A




LWORLD

Z-World

2900 Spafford Street

Davis, California 95616-6800
USA

Tel. (530)757-3737
FAX (530)753-5141

Web site: http://www.zworld.com

022-0059 Rev. A

10



	AN213
	Rabbit 2000 Serial Port Software
	Introduction
	Circular Buffer Implementation
	Using Non-Cofunction Routines
	Using Cofunction Routines
	Parity and Stop Bits
	Flow Control
	Flow Control Implementation
	Achievable Baud Rates

	Packet Library Implementation
	Spillover Buffer
	User-Defined Functions
	Function Listing



