
����������	

���� AN212

Using 512k Flash Memory &
512k SRAM in Rabbit-Based Systems

Introduction

The Rabbit 2000™ microprocessor can address up to one megabyte (1M) of memory. In
most implementations, this memory is split between flash memory and static RAM, usu-
ally in increments of 128k, 256k or 512k. (The amounts of flash memory and SRAM need
not be equal.) When using Dynamic C versions 7.03 and 7.04 (and earlier versions), there
are limitations on using more than 256k of either memory type. This Application Note and
the accompanying ZIP file describe techniques for making use of up to 512k of flash
memory or SRAM (in 2 x 256k chip configuration) under these versions of Dynamic C.

(Note: These issues will be addressed in Dynamic C 7.05 so that making full use of the 1M
address space will be nearly transparent to the user.)

Using a Second Flash Memory

Some Z-World/Rabbit Semiconductor controller boards come with two 256k flash mem-
ory chips. User-designed systems may use similar memory configurations.Under Dynamic
C 7.03/7.04, the second flash chip can be used for the Flash File System (FFS), but a small
change is needed if more than 256k of RAM is to be used in the same system. Versions of
Dynamic C prior to 7.05 cannot take advantage of the second flash for code without some
BIOS and library code changes. The second flash on Z-World boards is designated by
default to be used for the Flash File System.

For Dynamic C 7.05 and later, the only change required to use the second flash for pro-
gram code will be to uncomment out the following line in the BIOS:

//#define USE_2NDFLASH_CODE

The methods and changes described were developed and tested under version 7.03 and
7.04 only, but it is possible to retrofit the changes to earlier versions. Dynamic C 7.04 has
some of the changes here incorporated into it, so fewer changes are required where noted.
022-0058 Rev. A 1

Here are the ways two 256k flash chips can be used with 512k or less RAM:

• Use the 2nd flash for the Flash File System, use the extra RAM for xalloc().

• Use the 2nd flash for xmem code and constants, use the extra RAM for xalloc().

• Use 2 coresident programs (per Application Note 210).

For example, the RabbitCore 2000 comes with 512k of RAM and 256k of flash memory.
The changes to BIOS and library files given here will make the full 512K available to the
progam.

Each of these usages has a section below discussing it. A user not interested in the details
of what changes are needed and why can simply copy the files needed for the chosen con-
figuration into the appropriate places and make any other required changes. Users who
want details of the changes made to facilitate a memory configuration can read the expla-
nations after the listed changes. Note that using the Flash File System is not compatible
with either using the second flash for code/constants, or using the second flash for a sec-
ond coresident program.

APNOTE212.ZIP contains all of the files referenced in the discussions except for
DEFAULT.H, which requires a small change depending on which board is used. It is rec-
ommended to save old copies of files that will be replaced with like-named files by chang-
ing their extensions to .BAK. Here are the files contained in APNOTE212.ZIP:

• APNOTE212BIOS.C - A special BIOS to use for all the memory usages discussed here
except compiling two co-resident programs. Use Options | Compiler in Dynamic C to
specify this as the user defined BIOS.

• FLASHWR.LIB - A replacement for the like named file in \LIB\BIOSLIB\. This ver-
sion ensures that the flash transfer buffer is allocated at the top of used RAM for all of
the usages described in this document. It also allows the System ID block to be over-
written when using the second flash for code.

• STACK.LIB - A replacement for the like named file in \LIB\BIOSLIB\ . This version
adjusts the initialization of the extended memory so that the correct areas of RAM will
be available for all of the usages described in this document.

• WRSYSID.C - A program to rewrite the System ID Block if desired.

• FLASH.LIB, FS_FLASH.LIB - Replacements for the like named files in \LIB\FILE-
SYSTEM\. These are changed to reflect memory mapping changes made in
APNOTE212BIOS.C

Copy all of these files to the apppropriate location. (Read the appropriate usage section
first, not all of the usages discussed require changes.)
022-0058 Rev. A 2

Using a Second Flash Memory for FFS

To use the second flash memory for the Flash File System, no changes are required for
Dynamic C 7.03 or 7.04 if the RAM size is less than 512K. If 512K of RAM is used, no
changes are required for 7.04, but for 7.03, use the files accompanying this document, and
make sure that the macro definition:

//#define USE_2NDFLASH_CODE

is commented out.

For Dynamic C 7.03, STACK.LIB is needed to correctly initialize RAM xmem allocation
so that all unused portions of the RAM are available for xalloc() when the RAM size is
512K. A change in the quadrant mapping in the BIOS requires changes to the second
flash driver only in 7.03.

Using a Second Flash Memory for xmem Code/Constants

To use the second flash memory for xmem code and constants, make sure that the macro
definition:

#define USE_2NDFLASH_CODE

is not commented out.

Additional change needed:
The following lines of code in \LIB\DEFAULT.H are used to default the board type to the
JackRabbit board if no System ID block is detected:

#if (_BOARD_TYPE_ == 0x0000)
#undef _BOARD_TYPE_
#define _BOARD_TYPE_ BL1810
#endif

For boards other than the JackRabbit, that entire block of code should be commented out
and replaced by:

#undef _BOARD_TYPE_

followed by one of these definitions:

#define _BOARD_TYPE_OP6600 // 18MHz Intellicom, no Ethernet
#define _BOARD_TYPE_RTDK // 18MHz TCP/IP Toolkit
#define _BOARD_TYPE_OP6700 // 18MHz Intellicom + Ethernet
#define _BOARD_TYPE_ EG2000 // 22MHz EtherGate,2 enet ports
#define _BOARD_TYPE_ RABLINK // 22MHz RabbitLink
#define _BOARD_TYPE_ EG2100 // 22MHz RabbitLink
#define _BOARD_TYPE_ EG2020 // 22MHz EtherGate,one enet port
#define _BOARD_TYPE_ RCM2100 // 22MHz ECM,enet,512K/512K
#define _BOARD_TYPE_ RCM2110 // 22MHz ECM,ethernet,256K/128K
#define _BOARD_TYPE_ RCM2120 // 22MHz AECM,512K/512K
022-0058 Rev. A 3

#define _BOARD_TYPE_ RCM2130 // 22MHz AECM,256K/128K
#define _BOARD_TYPE_ RCM2115 // 22MHz ECM,ethernet,256K/128K

Explanation:
For 7.03, STACK.LIB is needed to initialize RAM xmem allocation correctly when RAM
size is 512k. Because Dynamic C currently only detects the primary flash on CS0,
APNOTE212BIOS.C changes

#define FLASH_SIZE _FLASH_SIZE_

to:

#define FLASH_SIZE _FLASH_SIZE_*2

when using the second flash for code, so that the compiler knows there is extra space for
xmem code and constants. The BIOS also maps the second physical memory quadrant
(40000h-7FFFFh) to CS2/OE0/WE0 so that Dynamic C sees the bottom 512k as a contig-
uous block of available flash. Another small change to the BIOS file was necessary to
allow Dynamic C to write code to the second flash when downloading code or writing
breakpoints. The code in FLASHWR.LIB that prevents the System ID block from being
written is disabled in this special version.

When Dynamic C boots up a target board, the Board ID contained in the System ID Block
is used to define the macro _BOARD_TYPE_ which is used at compile time to determine
which board specific libraries to use by default, among other things. Because Dynamic C
prior to version 7.05 does not know how to compile “around” the system ID block located
in the top of the primary flash, it will write over that block. The change to DEFAULT.H
replaces the board type information lost when the System ID Block is overwritten.

WRSYSID.C is a program that can be used to restore the System ID Block if desired.

Using Two Coresident Programs

Application Note 210 and its accompanying ZIP file explain the changes needed to use the
second flash memory for two coresident programs.

Using the RabbitCore Module RCM2000 with 512K of RAM

To use the full 512k of SRAM on the RCM2000 and similar boards, make sure that the
macro definition:

//#define USE_2NDFLASH_CODE

stays commented out.

Explanation:
For Dynamic C 7.04, this will work “out of the box,” without the files accompanying this
Application Note. No changes are required. For Dynamic C 7.03, STACK.LIB is needed
to correctly initialize RAM xmem allocation so that all unused portions of the RAM are
available for xalloc(). Keeping the macro commented out prevents the BIOS from
assuming two flashes are present.
022-0058 Rev. A 4

Using Extra SRAM Space

For more about how the Rabbit Memory Management and Memory Interface Units
(MMU,MIU) work, see Application Note 202.

The normal memory configuration that the Dynamic C BIOS sets up is as follows:

• 0000h - 5FFFh “root” code and constants

• 6000h - CFFFh “root” data.

• D000h - DFFFh stack segment

• E000h - FFFFh extended segment

The user can lower the root code-data boundary at 6000h to as low as 3000h by changing
the DATAORG macro in the top of the BIOS, but the realistic limitation of root RAM avail-
able to the user program for variables is D000h-3000h, or 40960d bytes. Until such time
as far pointers are implemented in Dynamic C, this limits the use of additional RAM space
to allocating blocks for extra stack space or data storage or temporary extended memory
buffers. The xalloc() function can be called by the user to allocate blocks of extra RAM
for data storage. The uC/OS-II function OSTaskCreate() takes a stack size parameter
and uses the xalloc() function internally. Segment registers used for the stack and
extended memory segments make those segment able to address anywhere in the 1M
physical address space. The Dynamic C functions xmem2root, root2xmem, and
xmem2xmem allow manipulation of data in extended memory.

Another way to make use of of extra RAM is to compile the user program to RAM (use
the Compiler Options dialog box) during development. This can be useful if it is critical
that interrupts not be turned off for too long when debugging. Single-stepping and setting
breakpoints in code involves writing to the code to change instructions into RSTs and then
change them back again. If the code is in flash, then this causes interrupts to be turned off
for as long 20 milliseconds depending on the flash device.

Hardware Issues

Using the second flash memory for code with Dynamic 7.03 or 7.04 (or earlier versions)
will cause the System ID Block to be overwritten. The only information in the that block
that is relevant to Dynamic C is the board ID and in the case of some Ethernet-enabled
boards, the MAC address. The change discussed above to hardcode the board ID macro in
DEFAULT.H takes care of the board ID issue for all boards.

The MAC address of the TCP/IP Development Board is stored in a small EEPROM, and
its IP drivers reads it from there, so the System ID block need not be duplicated in the sec-
ond flash. The change to DEFAULT.H to unconditionally use the correct library will still be
required.

The MAC address for the RabbitLink and RCM2100 is stored in the System ID block. The
RabbitLink was released primarily to use canned software to allow Dynamic C to program
and debug targets over the Internet, however it is programable by Dynamic C, so users
022-0058 Rev. A 5

considering using the second flash for code with Dynamic C 7.03 or 7.04 and thereby
overwriting the System ID Block need to consider this. If Dynamic C 7.05 is used, this not
an issue.

If it is necessary to use the second flash for code before the release of 7.05 with a Rab-
bitLink or RCM2100 board, then the WRSYSID.C program should be used to copy the sys-
tem ID block to the top of the second flash. The BIOS files provided will ensure that it
gets read from there.

To avoid backwards compatibility problems, it is best not to deploy RCM2100 and Rab-
bitLink field upgradable units with the System ID Block only in the second flash. Users
who will deploy field upgradable units are advised to upgrade to Dynamic C 7.05 and
make sure any units developed with the System ID block overwritten in the first flash
replace the block before deployment with WRSYSID.C.
022-0058 Rev. A 6

���������	�
���
���
�������������������
��������������������������
!�"

#��$�%�� &'�'��(
)"*�%�� &'�'��(�

+�������,�-���,..///$��������	�
���
���$
�	

	AN212
	Using 512k Flash Memory & 512k SRAM in Rabbit-Based Systems
	Introduction
	Using a Second Flash Memory
	Using a Second Flash Memory for FFS
	Using a Second Flash Memory for xmem Code/Constants
	Using Two Coresident Programs
	Using the RabbitCore Module RCM2000 with 512K of RAM
	Using Extra SRAM Space
	Hardware Issues

