
Application

Note AN210

Running Two Applications on a TCP/IP

Development Board

Introduction
To run a Download Manager (DLM) and a Downloaded Program (DLP) on the same target, or any

other situation where two separate, co-resident programs are desired, a little cleverness is neces-
sary. This application note describes a solution that can be used on a Rabbit based TCP/IP Devel-
opment Board with the standard configuration of two 256K flash EPROMs and one 128K or 512K

RAM.

The Dynamic C compiler and libraries usually handle the details of the Memory Management and

Memory Interface Units (MMU and MIU) so that most Dynamic C users don’t have to know them,
but anyone writing their own download manager is advised to understand the MMU/MIU. For a

detailed description of how memory addressing works on the Rabbit CPU, see Application Note

202, Rabbit Memory Management In a Nutshell.

This application note can serve as the starting point for the creation of a DLM that operates over a

modem. However, the details of communication and transmission of the DLP are left to future

application notes and the user. Here, the 2nd program is simply brought into the first program as

constant data at compile time using Dynamic C’s #ximport compiler directive, but the mechan-
ics of loading a second co-resident program into the second flash (the one on CS2) and switching

execution to it are well illustrated.
022-0056 Rev. B 1

http://www.rabbitsemiconductor.com/documentation/docs/app_tech/AN202/AN202.htm
http://www.rabbitsemiconductor.com/documentation/docs/app_tech/AN202/AN202.htm

Files needed
This example was created and tested under Dynamic C 7.03, and should be run under that version.
Subsequent versions of Dynamic C will be released with examples similar to this one. The follow-
ing five files are needed and are in the zip file that accompanies this application note. Extracting

the files to the Dynamic C root directory will automatically place the files in the correct locations:

1. \BIOS\DLMBIOS.C - BIOS file to compile DLM.C

2. \BIOS\DLPBIOS.C - BIOS file to compile DLP.C

3. LIB\BIOSLIB\FLASHWR.LIB - This is the standard flash driver library, modified to move

the hardcoded flash transfer buffer location for both DLP.C and DLM.C. This hardcoding will
go away after DC version 7.03, so that FLASHWR.LIB will work without modification for
analogous examples.

4. \DLM.C - Sample primary program to run the primary flash EPROM (the one on CS0).

5. \DLP.C - Sample secondary program, to be loaded to the second flash by DLM.C. This sam-
ple just sends the character ‘Z’ out continuously at 19200 baud over serial port C, which is

labeled as TX/RX/GND on the header block of the TCP/IP development board.

How it works
• The #ximport “DLP.BIN” directive brings in the program for the second flash into DLM

as constant data.

• A function that writes to the MIU bank register that determines how memory quadrant 0 (phys-
ical addresses 0-1FFFF) is mapped is copied into an array. It is copied there because it not pos-
sible to change the mapping of the primary flash while code is being run from it.

• The secondary program is moved from the primary flash to the secondary flash using a function

provided for writing to the second flash.

• The function that remaps quadrant 0 to the second flash is called in RAM.

• The function does not return, but instead calls physical address 0 which is now where DLP-
BIOS and DLP are.

• DLPBIOS runs the chip and board initialization, determines that the board is in run mode, and

runs the DLP.
022-0056 Rev. B 2

Compiling DLP.C
With the TCP/IP development board hooked up, use Dynamic C’s File menu to open DLP.C.
Open the Compiler options dialog by using the Options | Compiler menu.

Check Use under User Defined BIOS File, then click the button on the edit box and find and

select /BIOS/DLPBIOS.C using the File Dialog box that appears. Now use the Compile menu

to compile the DLP.C to a BIN file. Use the Define target configuration choice on the second-
ary menu. Make sure the Include BIOS option is checked. Choose the configuration for the

TCP/IP development board you are using. If you are using a 512K RAM TCP/IP board and the

that configuration does not appear on the target list, then click the Specify Board Parameters
button and choose the appropriate configuration.

When compilation finishes there should be a 9 kilobyte file called DLP.BIN in the same directory

as DLP.C.

Compiling DLM.C
Now open DLM.C. Change the user-defined BIOS to DLMBIOS.C. Use the Compile menu or F5

to compile DLM.C the target. Hit F9 to run it. If you look at the TCP/IP board’s serial output on an

oscilloscope or terminal, you should see a continuous stream of the letter Z being transmitted.
022-0056 Rev. B 3

BIOS Changes for Compiling Two Co-resident Programs
DLMBIOS.C and DLPBIOS.C are modifications of the standard BIOS, RABBITBIOS.C. Two

necessary changes were made in the BIOS source code to accomplish the goal of compiling two

co-resident programs. The first change divides the RAM between DLM.C and DLP.C and the sec-
ond change remaps memory quadrant 0. In addition, DLPBIOS.C defines the macro DLPBIOS so

that the flash driver will correctly locate the flash transfer buffer in RAM.

Dividing the RAM
The following macros near the top of the BIOS source code configure the memory sizes. The mac-
ros on the right are internally defined by Dynamic C during the cold boot process to match the

actual memory sizes in 4K byte units.

#define RAM_SIZE _RAM_SIZE_
#define FLASH_SIZE _FLASH_SIZE_

As of version 7.03, Dynamic C only detects the primary 256K flash on CS0 at start up, so

_FLASH_SIZE_ is set to 0x40 and doesn’t need to be changed. We want to split the RAM

between the two programs, so both DLMBIOS.C and DLPBIOS.C divide the RAM size in half:

#define RAM_SIZE _RAM_SIZE_/2

A macro called RAM_START, which defines physical address where RAM starts in 4 kilobyte

units, is normally set to 0x80 to start RAM at 80000h. For the DLP, it is set 0x90 to start RAM at
90000h: the DLP uses the top 64K of the RAM, and the DLM uses the bottom 64K.

#define RAM_START 0x90

Remapping Quadrant 0
The following two lines in DLPBIOS.C where the mapping of quadrant 0 is set up:

ld a, FLASH_WSTATES | 0x00 | (MB0CR_INVRT_A18<<4) | (MB0CR_INVRT_A19<<5)
...
ld a, FLASH_WSTATES | 0x00 | (MB0CR_INVRT_A18<<4) | (MB0CR_INVRT_A19<<5)

are changed to:

ld a, FLASH_WSTATES | 0x02 | (MB0CR_INVRT_A18<<4) | (MB0CR_INVRT_A19<<5)
...
ld a, FLASH_WSTATES | 0x02 | (MB0CR_INVRT_A18<<4) | (MB0CR_INVRT_A19<<5)

to change from CS0 to CS2.

Skipping Debug Mode
This change is not really necessary. Its purpose is to fool DLPBIOS into thinking the programming

cable is not attached and run the DLP unconditionally rather enter debug mode so that DLP can

start running without disconnecting the cable and recycling power.

This line of code in DLPBIOS.C:

jr nz,RunMode

is changed to:

jp RunMode
022-0056 Rev. B 4

Code Listing of DLM.C
#ximport "dlp.bin" dlp
#define CS2 2
#define WE0 0

char Chip_SW_Func [30]; // RAM space for chip switch function
void CopyChipSWtoRAM();
void SwitchChip(int CSOEWE);
root int WriteFlash2(unsigned long flashDst, void* rootSrc, int len);
int LoadProgram2ndFlash(unsigned long xfile);

//***
root main(){

CopyChipSWtoRAM(); // Put flash switching function in RAM

if(LoadProgram2ndFlash(dlp))
printf("Write Flash failed with error code %d",retval);

else
SwitchChip(CS2|WE0); // Map the 2nd flash to 00000 and go there

}

#asm

//***
// This function never runs, a copy of it RAM is run
// register hl contains the integer parameter

_SwitchFlashChip::
ipset 3 // turn off interrupts
ld a,(MB0CRShadow) // get shadow reg
and 0xf8 // mask out CS/WE/OE bits
or L // set to new CS,WE,OE which is in L
ioi ld (MB0CR),a // load MIU bank register
lcall 0xf2:0xE000 // call physical addr. 000000

_EndSwitchFlash::

#endasm

//***

root SwitchChip(int CSOEWE){
#asm

call Chip_SW_Func // call RAM copy of _SwitchFlashChip
#endasm
}

//***

void CopyChipSWtoRAM(){
// put flash switching function in RAM
memcpy(Chip_SW_Func, _SwitchFlashChip,
((int)((unsigned)_EndSwitchFlash - (unsigned)_SwitchFlashChip)+1));

}

022-0056 Rev. B 5

//***

int LoadProgram2ndFlash(unsigned long xfile){
// Returns 0 if successful
// xfile is the value given by the #import directive

char sectorBuf [0x200];
long length, fileOffset,flashOffset;
int retval,Size;

fileOffset = xfile+4; // offset in xmem where file data begins
flashOffset = 0xc0000ul; // physical address off quadrant 3
xmem2root(&length, xfile, sizeof(long)); // get the length of the DLP

// write it to the 2nd flash one sector at a time

while(length > 0) {
// Size is sector size OR file length MOD sector size
if (length >= _FlashInfo.sectorSize)

Size = _FlashInfo.sectorSize;
else

Size = (int)length;
xmem2root (sectorBuf, fileOffset, Size); // copy sector to RAM
if(retval = WriteFlash2(flashOffset, sectorBuf, Size))

break;

fileOffset += Size;
flashOffset += Size;
length -= Size;

}
return retval;

}

//***

root int WriteFlash2(unsigned long flashDst, void* rootSrc, int len) {}

// NOT SHOWN HERE, see zip file. Function to write second
// flash, returns 0 if successful
022-0056 Rev. B 6

	Introduction
	Files needed
	How it works
	BIOS Changes for Compiling Two Co-resident Programs
	Code Listing of DLM.C

