plication
Note AN210

Running Two Applicationson a TCP/IP
Development Board

Introduction

To run a Download Manager (DLM) and a Downloaded Program (DL P) on the same target, or any
other situation where two separate, co-resident programs are desired, alittle clevernessis neces-
sary. This application note describes a solution that can be used on a Rabbit based TCP/IP Devel-
opment Board with the standard configuration of two 256K flash EPROMs and one 128K or 512K
RAM.

The Dynamic C compiler and libraries usually handle the details of the Memory Management and
Memory Interface Units (MMU and M1U) so that most Dynamic C users don’'t have to know them,
but anyone writing their own download manager is advised to understand the MM U/MIU. For a
detailed description of how memory addressing works on the Rabbit CPU, see Application Note
202, Rabbit Memory Management In a Nutshell.

This application note can serve as the starting point for the creation of aDLM that operates over a
modem. However, the details of communication and transmission of the DLP are left to future
application notes and the user. Here, the 2nd program is simply brought into the first program as
constant data at compile time using Dynamic C's#xi npor t compiler directive, but the mechan-
ics of loading a second co-resident program into the second flash (the one on CS2) and switching
execution to it are well illustrated.

022-0056 Rev. B 1

http://www.rabbitsemiconductor.com/documentation/docs/app_tech/AN202/AN202.htm
http://www.rabbitsemiconductor.com/documentation/docs/app_tech/AN202/AN202.htm

Files needed

This example was created and tested under Dynamic C 7.03, and should be run under that version.
Subsequent versions of Dynamic C will be released with examples similar to this one. The follow-
ing fivefiles are needed and are in the zip file that accompani es this application note. Extracting
the files to the Dynamic C root directory will automatically place the files in the correct locations:

1.
2.

3.

\ BI OS\ DLMBI OS. C - BIOSfileto compile DLM C

\ BI OS\ DLPBI OS. C - BIOSfileto compile DLP. C
LI B\ BI OSLI B\ FLASHWR. LI B - Thisisthe standard flash driver library, modified to move
the hardcoded flash transfer buffer location for both DLP. Cand DLM C. This hardcoding will

go away after DC version 7.03, so that FLASHWR. L1 B will work without modification for
analogous examples.

\ DLM C- Sample primary program to run the primary flash EPROM (the one on CS0).

5. \ DLP. C - Sample secondary program, to be loaded to the second flash by DLM C. This sam-

plejust sends the character ‘Z' out continuously at 19200 baud over serial port C, whichis
labeled as TX/RX/GND on the header block of the TCP/IP devel opment board.

How it works

The#xi nport “DLP. Bl N' directive bringsin the program for the second flash into DLM
as constant data.

A function that writes to the MIU bank register that determines how memory quadrant O (phys-
ical addresses 0-1FFFF) is mapped is copied into an array. It is copied there because it not pos-
sible to change the mapping of the primary flash while code is being run from it.

The secondary program is moved from the primary flash to the secondary flash using afunction
provided for writing to the second flash.

The function that remaps quadrant O to the second flashis called in RAM.

The function does not return, but instead calls physical address 0 which is now where DLP-
BIOSand DLP are.

DLPBIOS runs the chip and board initialization, determines that the board isin run mode, and
runsthe DLP.

022-0056 Rev. B 2

Compiling DLP.C
With the TCP/IP development board hooked up, use Dynamic C's File menu to open DLP. C.
Open the Compiler options dialog by using the Options | Compiler menu.

Compiler Options
— Bur-Time Checking ——— — “Waring Beportz —
= Al
M Painters ™ Senious Only
™ Mone
— BIOS Memory Setting ——— — Ivpe Checking ——
¥ Code and BIOS in Flazh V¥ Prototype
" Code and BIDS in BAM IV Demation
¥ Painter
User Defined BIOS File Qptirnize Far
[Usze = Siza
| J & Spead
‘watch Code
& Allow any expressions in watch expressions
™ Restrict watch expressions [May save root code space]
ak. Help Cancel

Check Use under User Defined BIOS File, then click the button on the edit box and find and
select / Bl OS/ DLPBI OS. Cusing the File Dialog box that appears. Now use the Compile menu
to compilethe DLP. CtoaBIN file. Usethe Define target configuration choice on the second-
ary menu. Make sure the Include BIOS option is checked. Choose the configuration for the
TCP/IP development board you are using. If you are using a 512K RAM TCP/IP board and the
that configuration does not appear on the target list, then click the Specify Board Parameters
button and choose the appropriate configuration.

[l R Inspect Options Window Help

Compils to Target] i [P [RRPUR [
Compile to . bin file |Jse attached tanget
Beset Target/Compile BIOS Ctrl+Y Define target configuration

v |nclude debug code/RST 28 instructions v Include BIOS

When compilation finishes there should be a 9 kilobyte file called DLP. Bl Ninthe same directory
asDLP. C.

Compiling DLM.C

Now open DLM C. Change the user-defined BIOSto DLMBI OS. C. Usethe Compile menu or F5
to compile DLM Cthetarget. Hit FO to runit. If you look at the TCP/IP board’s serial output on an
oscilloscope or terminal, you should see a continuous stream of the letter Z being transmitted.

022-0056 Rev. B 3

BIOS Changes for Compiling Two Co-resident Programs

DLMBI CS. Cand DLPBI OS. Care modifications of the standard BIOS, RABBI TBI CS. C. Two
necessary changes were made in the BIOS source code to accomplish the goal of compiling two
co-resident programs. The first change divides the RAM between DLM C and DLP. C and the sec-
ond change remaps memory gquadrant 0. In addition, DLPBI CS. Cdefinesthe macro DLPBI OS so
that the flash driver will correctly locate the flash transfer buffer in RAM.

Dividing the RAM

The following macros near the top of the BIOS source code configure the memory sizes. The mac-
ros on theright are internally defined by Dynamic C during the cold boot process to match the
actual memory sizesin 4K byte units.

#defi ne RAM S| ZE _RAM SI ZE_
#define FLASH SIZE _FLASH SI ZE_

As of version 7.03, Dynamic C only detects the primary 256K flash on CS0 at start up, so
_FLASH_SI ZE_ isset to 0x40 and doesn’'t need to be changed. We want to split the RAM
between the two programs, so both DLMBI OS. Cand DLPBI CS. C divide the RAM sizein half:

#define RAMSIZE ~ _RAM SIZE /2

A macro called RAM_START, which defines physical address where RAM startsin 4 kilobyte
units, is normally set to 0x80 to start RAM at 80000h. For the DLP, it is set 0x90 to start RAM at
90000h: the DLP uses the top 64K of the RAM, and the DLM uses the bottom 64K .

#defi ne RAM START 0x90
Remapping Quadrant 0
The following two linesin DLPBI CS. C where the mapping of quadrant O is set up:
Id a, FLASH WSTATES | 0x00 | (MBOCR | NVRT_A18<<4) | (MBOCR | NVRT_A19<<5)

Id a, FLASH WSTATES | 0x00 | (MBOCR | NVRT A18<<4) | (MBOCR | NVRT A19<<5)

are changed to:
Id a, FLASH WBTATES | 0x02 | (MBOCR_I NVRT_A18<<4) | (MBOCR_| NVRT_A19<<5)

Id a, FLASH WSTATES | 0x02 | (MBOCR | NVRT A18<<4) | (MBOCR | NVRT A19<<5)

to change from CS0 to CS2.

Skipping Debug Mode

Thischangeis not really necessary. Its purpose isto fool DLPBIOS into thinking the programming
cableis not attached and run the DL P unconditionally rather enter debug mode so that DLP can
start running without disconnecting the cable and recycling power.

This line of codein DLPBI CS. C:

jr nz, RunMbde
is changed to:

jp RunMode

022-0056 Rev. B 4

Code Listing of DLM.C
#xinport "dl p.bin" dlp
#define CS2 2
#define WEO O

char Chi p_SW Func [30]; /1 RAM space for chip switch function

void CopyChi pSW oRAM) ;

void SwitchChip(int CSOEVE);

root int WiteFl ash2(unsigned |ong flashDst, void* rootSrc, int len);
int LoadPr ogr an2ndFl ash(unsi gned | ong xfile);

//***

root main(){
Copy Chi pSW oRAM) ; /1 Put flash switching function in RAM
i f (LoadPr ogr an2ndFl ash(dl p))
printf("Wite Flash failed with error code %", retval);
el se
Swi t chChi p(CS2| VIEO) ; /1 Map the 2nd flash to 00000 and go there
}

#asm

//***

/1 This function never runs, a copy of it RAMis run
/1l register hl contains the integer paraneter

_Swi t chFl ashChi p::

i pset 3 /1 turn off interrupts

I d a, (MBOCRShadow) /1 get shadow reg

and Oxf8 /1 mask out CS/WE/ CE bits

or L /] set to new CS,WWE, CE which is in L

ioi I|Id (MBOCR), a /1 load MU bank register

Icall 0Oxf2: OXEOOO /1 call physical addr. 000000
_EndSwi t chFl ash: :
#endasm

//***

root SwitchChip(int CSOEWE){
#asm

call Chi p_SW Func /1 call RAM copy of _SwitchFl ashChip
#endasm

}

//***

voi d CopyChi pSW oRAM) {
/1 put flash switching function in RAM
menmcpy(Chi p_SW Func, _Sw t chFl ashChi p,
((int)((unsigned)_EndSwi t chFl ash - (unsigned)_SwitchFl ashChip)+1));

022-0056 Rev. B

//***

i nt LoadProgran2ndFl ash(unsi gned | ong xfile)({
// Returns O if successful
/1 xfile is the value given by the #inport directive

char sect or Buf [0x200] ;
long length, fileOfset,flashOfset;
int retval, Size;

fileOfset = xfil e+4; /1 offset in xmemwhere file data begins
flashOf fset = Oxc0000ul ; // physical address off quadrant 3
xmen2root (& ength, xfile, sizeof(long)); // get the length of the DLP

// wite it to the 2nd flash one sector at a tine

whil e(length > 0) {
/1 Size is sector size ORfile |l ength MO sector size
if (length >= _Flashlnfo.sectorSize)
Si ze = _Fl ashl nfo. sectorSize;
el se
Si ze (int)length;
xmen2root (sectorBuf, fileOfset, Size); // copy sector to RAM
if(retval = WiteFlash2(flashOfset, sectorBuf, Size))
br eak;

fileOfset += Size;

flashO fset += Size;

I ength -= Si ze;
}

return retval;

}

//***
root int WiteFlash2(unsigned |ong flashDst, void* rootSrc, int len) {}

/1 NOT SHOMN HERE, see zip file. Function to wite second
/1 flash, returns 0 if successful

022-0056 Rev. B

	Introduction
	Files needed
	How it works
	BIOS Changes for Compiling Two Co-resident Programs
	Code Listing of DLM.C

