
Application

Note AN208

Connecting the Rabbit via Dial-Up PPP

Introduction

This application note will briefly explain PPP and modem hardware, and describe how to

use the Rabbit PPP and modem control libraries to handle a dial-up internet connection to

an ISP.

Overview

The first section will discuss the basics of what PPP is. This is followed by a general dis-
cussion of modems and ISP negotiation, since the specifics of a dial-up PPP connection

are very dependent on modem hardware and the ISP you are connecting to. Finally, the

implementation of a PPP dial-up on the Rabbit will be covered.

PPP
Point-to-Point Protocol (PPP) is a versatile protocol for transferring data packets between

two hosts over a full-duplex serial link. One of the most common uses of the PPP protocol
is the transfer of IP packets between a remote host and an ISP over a modem connection.

Modems
The interface between a modem and a controller is either a true RS232 interface or a vari-
ation on RS232 that uses TTL voltage levels for all of the signals. The latter are used by

board mounted modem modules. If an external modem is used, an RS232 transceiver chip

must is needed to convert RS232 voltages to logic signals and vice versa. A full RS232

connection has 3 outputs and 5 inputs from the controllers point of view. In RS232 termi-
nology, the controller is referred to as the DTE (Data Terminal Equipment). Conversely,
modems and other peripherals are referred to as DCE’s (Data Communications Equip-
ment). There are single chips such as the Maxim MAX235 which have the correct combi-
nation of transmitters and receivers for a full DTE interface.
022-0053 1

ISP
An Internet Service Provider (ISP) is a service that allows hosts to connect to the internet
by dialing in with a modem and negotiating a PPP link with an ISP host that is directly

connected to the internet and will route packets to and from the remote host. Unfortunately

there is no universal standard for negotiating this connection with a particular ISP.
Although the PPP protocol includes a variety of authentication methods, an ISP will often

issue a password challenge in normal text mode before beginning PPP negotiation. This is

partly an historical anomaly created during the transition from shell accounts on ISP

machines to direct PPP connections, when the same systems were used for both types of
services.

Hardware Implementation

The Rabbit implementation for PPP currently uses serial port C on the Rabbit chip. For
directly connecting a serial line to the peer, the two serial data lines may be adequate for
low speeds (9600 baud max). Higher speed connections through a direct line or modem

will usually require flow control. Hardware flow control is implemented for the Rabbit
PPP system. It follows the RS232 convention of using RTS and CTS lines. If a modem is

used, the additional control signals for the RS232 standard should be connected. The

modem control library defines default connections to the Rabbit as follows:

Software Implementation

The first stage in dial-up PPP is to establish a modem connection with the ISP. The func-
tion ModemInit() opens the serial port detects if there is a modem connected and ready.
It does this by sending “AT” to the modem a set number of times until it receives an “OK”

response. This should work with any Hayes-compatible modem, which is the standard

Table 1. Modem Pin Assignments

RS232

Signal
Rabbit Pin Direction

DTR PB6 OUT

RTS PB7 OUT

CTS PB0 IN

DCD PB2 IN

RI PB3 IN

DSR PB4 IN

TD PC2 OUT

RD PC3 IN
part # 2

today. At this point the modem is ready and commands can be sent to it using Modem-

Send(). Remember to include a carriage return “\r” at the end of each command sent.

The function ModemExpect() is used to wait for a character sequence to occur. Normally

the first use of this in a program is to determine that the modem has connected. When a

connection occurs, the modem will send a string along the lines of “CONNECT AT x” or
something similar. ModemExpect() can be set to listen for this. Once connected, the ISP

may either attempt PPP negotiation immediately, or request a user name and password

first. In the latter case, a sequence of ModemSend() and ModemRequest() calls are used

to handle this.

Eventually the ISP will begin PPP negotiation. At this stage ModemClose() should be

called to shutdown normal serial operation. After calling sock_init() and doing any

other necessary TCP/IP initialization, PPPinit() is called, followed by any necessary

PPP initialization, and finally a call to PPPstart(). PPPstart() will return after PPP

negotiation is complete, or if it has timed out. At this point a link has been established and

IP packets can be sent and received normally.

As mentioned before, one of the difficulties with dial-up PPP is an ISP will try to authenti-
cate the dialer before PPP negotiation. There are no real standards for doing this, so each

ISP is potentially different. The best way to develop a correct sequence of ModemSend()

and ModemExpect() commands is to connect to the ISP using a terminal program on a

PC. You can then take note of the necessary sequence to start PPP negotiation.

Here is a hypothetical session as seen by a terminal program. Note, characters typed in

and sent to the ISP or the modem are in bold.

AT

OK

ATDT5554545

OK

CONNECT 28800

Welcome to someisp.com

Login?rabbit

Password:Ilikecarrots

Logging in as rabbit

Start PPP $*($}}}}}$}$#$#${@#>>}}FF}}$}
part # 3

From this session we could use ModemSend() and ModemExpect() to create a dial-up

function like this:

As you can see, ModemExpect() will pick up any part of the received string. Clever use

of this allows the initialization to be fairly generic, but subtle differences between ISP’s

will often require customized sequences such as this.

Tearing down the link must also be done in stages. First, a terminate request must be sent
to the peer. This is done with PPPshutdown(). PPPshutdown() will return once an

int myDialUp()
{

if(ModemOpen(57600) == 0)
{

return -1;
}
if(ModemInit() == 0)
{

return -2;
}
ModemSend(“ATDT5554545\r”);
if (ModemExpect(“OK”, 2000) == 0))
{

return -3; //something is wrong with the modem
}

//wait up to 30 seconds for modem to connect
if(ModemExpect(“CONNECT”, 30000) == 0)
{

return -4; //didn’t connect to the ISP
}
if(ModemExpect(“Login?”, 5000) == 0)
{

return -5;
}
ModemSend(“rabbit\r”);
if(ModemExpect(“word:”, 5000) == 0)
{

return -6;
}
ModemSend(“Ilikecarrots\r”);
if(ModemExpect(“PPP”, 5000) == 0)
{

return -7; //probably a failed login
}
ModemClose();
sock_init();
PPPinit(57600);
PPPflowcontrolOn();
return 1; //all done

}

part # 4

acknowledgement has been sent by the peer, or after a time out period. This is followed by

a call to PPPclose, which unloads the PPP serial driver. If the connection is via a modem,
the modem must then be hung up. First the regular serial driver is reopened with Mode-

mOpen(). ModemHangup() sends the hang up and reset commands to the modem.
Finally, a call to ModemClose() shuts down the serial driver.

Using Cofunctions

Establishing a PPP connection over a modem is time-consuming. Depending on the baud

rate negotiated by the modem, the whole process can take 30 seconds or more. Much of
this time is spent by the controller waiting for a response from the other end. In a practical
application where the controller has other tasks to perform, this may be unacceptable. For
this, there are cofunction versions of all of the functions that wait for responses from the

peer. There are still parts of the initialization process that create delays, but the effect is

much smaller.

Summary

Dial-up PPP is a reliable and standardized method for low-speed internet connections.
Giving an embedded system the ability to use dial-up PPP allows for internet connectivity

in situations where ethernet is either not available or not necessary for the application.

REFERENCES

RFC1661, The Point-to-Point Protocol, http://www.ietf.org/rfc/rfc1661.txt

RFC1662, PPP in HDLC-like Framing, http://www.ietf.org/rfc/rfc1662.txt

James Carlson, PPP design and Debugging, Addison Wesley 1998
022-0053 5

���������	�
��
�
���
������������
�������
��������������������������
!�"

#��$�%�� &'�'��(
)"*�%�� &'�'��(�

+�������,�-���,..///$��������	�
��
�
���$
�	

	Introduction
	Overview
	Hardware Implementation
	Software Implementation
	Using Cofunctions
	Summary

