
����������	


���� AN206

How Dynamic C Cold Boots a Rabbit Target

Introduction

This application note describes how Dynamic C bootstraps a Rabbit CPU based target. 
Dynamic C assumes that target controller boards using the Rabbit CPU have no pre-
installed firmware. It takes advantage of the Rabbit’s bootstrap mode which allows mem-
ory and I/O writes to take place over the programming port.

The source code for initial and secondary loaders is provided (please download accompa-
nying ZIP file), along with instructions on how to compile them. 

This information is provided as an example of how the Rabbit’s programming port can be 
used to bootstrap a Rabbit based board. Simpler methods of loading software are possible 
and will be discussed later.

Overview

On start up,  Dynamic C uses the PC’s DTR line on the serial port to assert the Rabbit 
RESET line to put the processor in cold-boot mode.  For details about the cold boot mode, 
please refer to the Rabbit 2000 Designer’s Handbook.  Next, Dynamic C uses a four stage 
process to load a user program:

1. Load the initial loader, coldload.bin, via “triplets” sent at 2400 baud from the PC to 
a target in bootstrap mode.

2. Run coldload.bin to load the secondary loader, pilot BIOS, at 19200 baud.

3. Run the pilot BIOS, pilot.bin, and load the BIOS (as Dynamic C compiles it.) 

4. Run the BIOS and load the user program at 115200 baud (after Dynamic C compiles 
the user program to a file.)
022-0049 Rev. A 1

http://www.rabbitsemiconductor.com/DESIGN/3coldboo.htm#424926


Compiling the Initial Loader

The source code for the cold loader is in COLDLOAD.C in the  BOOTSTRAP.ZIP file. 

To compile it, open it in Dynamic C and use the “Compile to .bin File” command on the 
Compile menu. You cannot compile this file directly to the target and debug it, because 
you will overwrite the debug kernel and target communications while you are using them 
and lose target communication. “Compile to.bin File” will create a file named COLD-
LOAD.BIN in the same directory where COLDLOAD.C is located. 

COLDLOAD.BIN will be bigger than actually needed because a BIN file is normally cre-
ated by copying the BIOS to the start of a file, then adding the application to the end. 
COLDLOAD.C contains special compiler directives that locate the compiled code to 
0x0000 on top of the BIOS code, which is much bigger than the COLDLOAD code. 
Dynamic C does not load the whole file to the target, it only loads until the triplet 
80h,024h,080h is encountered. See Loading Algorithm Details below.

To try the new cold loader, copy COLDLOAD.BIN to the BIOS directory. Make a backup 
copy of the existing COLDLOAD.BIN to be safe. When you restart Dynamic C or hit 
<Ctrl-Y> the new cold loader will be used.

Compiling the Secondary Loader

The source code for the secondary loader is in PILOT.C in the BOOTSTRAP.ZIP file. 

To compile and test the secondary loader do the same steps used for the initial loader. Be 
sure to make a backup copy of PILOT.BIN in case something goes wrong. This file is 
larger than needed also. The initial loader loads a fixed number of bytes for the pilot 
BIOS, then begins executing it. 

Loading Algorithm Details

The programming cable keeps the SMODE pins pulled high so that on reset or power up, 
the Rabbit board is in bootstrap mode waiting for triplets. When Dynamic C starts, the fol-
lowing sequence of events takes place:

1. The serial port is opened with the DTR line low, closed, then reopened with the DTR 
line high at 2400 baud. This pulses the reset line on the target low (the programming 
cable inverts the DTR line) and prepares the PC to send triplets. 

2. A group of db triplets (defined in the file COLDLOAD.BIN) consisting of 2 address 
bytes and a data byte are sent to the target. The first few bytes sent are sent to I/O 
addresses to set up the MMU and MIU and do system initialization. The MMU is set up 
so that RAM is mapped to 0x00000, and flash is mapped 0x80000.

3.  The remaining triplets place a small program at memory location 0x00000. The last 
triplet sent is 0x80,0x24,0x80.  This tells the CPU to ignore the SMODE pins and start 
running code at address 0x00000. 
022-0049 Rev. A 2



4.  The PC now bumps the baud rate on the serial port to 19200, and the initial loader pro-
gram does the following: 

• The crystal speed is measured to determine what divisor is needed to set a baud 
rate of 19200. The divisor is stored at address 0x4002 for later use by the BIOS, 
and the programming port is set up to be a 19200 baud serial port.

• The program enters a loop where it receives a fixed number of bytes that are the 
secondary loader program (pilot.bin sent by the PC.)  It writes those bytes to 
memory location 0x4100. After all of the bytes are received, program execution 
jumps to 0x4100.

5.  The secondary loader does a wrap-around test to determine how much RAM is avail-
able, and reads the flash ID. This information is available to Dynamic C upon request.

6.  The secondary loader now enters a finite state machine (FSM) that implements the 
Dynamic C/Target communications protocol. Dynamic C compiles the core of the reg-
ular BIOS and sends it to the target at address 0x00000 which is still mapped to RAM. 
Note that this requires the BIOS core to be 0x4000 or less in size. The source code for 
the BIOS is in \BIOS\RABBITBIOS.C

7. The FSM checks memory location 0x4001 (previously set to zero) after receiving each 
byte. When the compilation and loading to RAM of the BIOS is complete, Dynamic C 
signals the target to run the BIOS by sending a one to 0x4001. 

8.  The BIOS runs some initialization code, including setting up the serial port for 115200 
baud, setting up serial interrupts and starting a new FSM. 

9. The BIOS copies itself to flash at 0x80000, and switches the mapping of flash and 
RAM so that RAM is at 0x80000 and flash is at 0x00000. As soon as this remapping is 
done, the BIOS’s execution of instructions begins happening in flash. 

10.When the user compiles a program to the target, it is first written to a file, then the file 
is loaded to the target using the BIOS’s FSM. The file is used as an intermediate step 
because fix-ups are done after the compilation and would cause extra wear on the flash 
if done straight to the flash.

11.When the program is fully loaded, Dynamic C sets a breakpoint at the beginning of 
main and runs the program up to the breakpoint. Dynamic C is now is debug mode.

Alternatives for Loading Without Dynamic C

The BIOS code released with Dynamic C versions 6.50 and later comes with support for 
“cloning.” Cloning is a way for an already programmed Rabbit board to copy its flash con-
tents into another Rabbit board via a special cable connecting both programming ports. 
Cloning is described in the Rabbit Designer’s Handbook.

At the time of this writing, a Rabbit Field Utility program that runs as a 32 bit Windows 
application is being implemented by Rabbit Semiconductor. This program loads BIN files 
generated by Dynamic C for Rabbit, into Rabbit based boards.
022-0049 Rev. A 3



Also at the time of this writing, a robust solution for remote downloading involving both 
new hardware and new software is in the design phase.

Methods of loading programs from a PC or other device involving fewer steps can be 
implemented by users if they wish.

A one-stage way of loading an application to a Rabbit board would be to use the bootstrap 
mode to load the application program to RAM and run out of RAM. The effective speed of 
loading a program this way is 80 bytes per second since each byte requires 2 additional 
address bytes, and 2400 baud translates to about 240 bytes per second. It is not possible to 
write to flash this way unless the flash write requires no special write algorithm.
022-0049 Rev. A 4

���������	�
��
�
���
������������
�������
��������������������������  
!�"

#��$�%�� &'�'��(  
)"*�%�� &'�'��( �

+�������,�-���,..///$��������	�
��
�
���$
�	


	Introduction
	Overview
	Compiling the Initial Loader
	Compiling the Secondary Loader
	Loading Algorithm Details
	Alternatives for Loading Without Dynamic C

