/\pplication ==
Note ANZ205

How to Get a uC/OS-I1 Application Running

I ntroduction

HC/OS-11 isahighly configurable, real-time operating system. It can be customized using
as many or as few of the operating system'’s features as needed. This application note out-
lines:

* The configuration constants used in uC/OS-I1,
* How to override the default configuration supplied in UCGS2. LI B.
* The necessary steps to get an application running.

It isassumed that the reader has afamiliarity with uC/OS-11 or has a uC/OS-11 reference
(MicroC/OS-11, The Real Time Kernel by Jean J. Labrosse is highly recommended).

Default Configuration

HC/OS-11 usualy relies on theincludefileos_cf g. h to get values for the configuration
constants. Since Dynamic C does not use this header file, these constants, along with their
default values, arein UCOS2. LI B. A default stack configuration is also supplied in
UCCS2. LI B. pC/OSHI for the Rabbit uses a more intelligent stack allocation scheme
than other uC/OS-11 implementations to take better advantage of unused memory.

The default configuration allows up to 10 normally created application tasks running at 64
ticks per second. Each task has a 512-byte stack. There are 2 queues specified, and 10
events. An event isaqueue, mailbox or semaphore. You can define any combination of
these three for atotal of 10. If you want more than 2 queues, however, you must change
the default value of OS_MAX_QS.

022-0047 Rev. A 1

Some of the default configuration constants are Isited below.

#define OS_MAX_EVENTS 10 //

/1
#define OS_MAX_TASKS 10 //

/1
#define OS_MAX S 21/
#def i ne OS_MAX_MEM PART 0//
#define OS_TASK_CREATE_EN 17/
#define OS_TASK_CREATE_EXT_EN o//
#define OS_TASK_DEL_EN o//
#define OS_TASK_STAT_EN o//
#define OS_Q EN 17/
#define OS_MEM EN 0//
#define OS_MBOX EN 171/
#define OS_SEM EN 17/
#define OS_TI CKS_PER_SEC 64 //
#define STACK _CNT_256 17/

/1
#define STACK CNT_512 OS_MAX TASKS + 1 //

Max number of events (semaphores
gueues, nmai |l boxes)

Max number of tasks (less stat
and idl e tasks)

Max number of queues in system
Max nunber of nenory partitions
Enabl e normal task creation

Di sabl e extended task creation
Di sabl e task del etion

Di sabl e statistics task creation
Enabl e queue usage

Di sabl e menory manager

Enabl e nai | boxes

Enabl e semaphores

number of ticks in one second
nurmber of 256 byte stacks (idle
task stack)

nunber of 512 byte stacks (task
stacks + initial program stack)

If aparticular portion of uC/OS-11 is disabled, the code for that portion will not be com-
piled, making the overall size of the operating system smaller. Take advantage of this fea-
ture by customizing pC/OS-11 based on the needs of each application.

Custom Configuration

In order to customize HC/OS-I1 by enabling and disabling components of the operating
system, simply redefine the configuration constants as necessary for the application.

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne

0S_MAX_EVENTS 2
0S_MAX_TASKS 20
0s_MAX QS 0
0S_MAX_MEM PART 15
0S_TASK_STAT_EN 1
0S_Q EN 0
0S_MEM EN 1
0S_MBOX_EN 0

0S_TI CKS_PER _SEC 64

If a custom stack configuration is needed also, define the necessary macros for the counts

of the different stack sizes needed by the application.

#def i
#def i
#def i
#def i

ne
ne
ne
ne

STACK_CNT_256 1 /1
STACK_CNT_512 2 /1
STACK_CNT_1K 10
STACK_CNT_2K 10

idle task stack
initial
/1 task stacks

/'l nunmber of 2K stacks

program + stat task stack

Follow the pC/OS-I1 and stack configuration constants with a#use “ucos2. i b” state-
ment. This ensures that the definitions supplied outside of the library are used, rather than
the defaultsin the library.

#use ucos2.lib

022-0047 Rev. A

This configuration uses 20 tasks, two semaphores, up to 15 memory partitions that the
memory manager will control, and makes use of the statistics task. Note that the configu-
ration constants for task creation, task deletion, and semaphores are not defined as the
library defaults will suffice. Also, note that 10 of the application tasks will each have a

1024 byte stack, 10 will each have a 2048-byte stack, and an extra stack is declared for the
statistics task.

022-0047 Rev. A 3

Examples

The following sample programs demonstrate the use of the default configuration supplied
inucos?2. | i b and aso acustom configuration that overrides the default.

Example 1

In this application, ten tasks are created and one semaphore is created. Each task pends on
the semaphore, gets a random number, posts to the semaphore, displays its random num-
ber, and finally delays itself for three seconds.

Looking at the code for this short application, there are several thingsto note. First, since
HC/OS-11 and dlice statements are mutually exclusive (both rely on the periodic interrupt
for a“heartbeat”), #use ucos2. | i b must beincluded in every uC/OS-I1 application (1).
In order for each of the tasksto have access to the random number generator semaphore, it
Isdeclared as aglobal variable (2). In most cases, all mailboxes, queues, and semaphores
will be declared with global scope. Next, OSI ni t must be called before any other pC/OS-
[l function to ensure that the operating system is properly initialized (3). Before uC/OS-I|
can begin running, at least one application task must be created. In this application, all
tasks are created before the operating system begins running (4). It is perfectly acceptable
for tasksto create other tasks. Next, the semaphore each task usesis created (5). Onceall
of theinitialization isdone, GSSt ar t iscalled to start uC/OS-11 running (6). In the code
that each of the tasksrun, it isimportant to note the variable declarations. The default stor-
age classin Dynamic C is static, so to ensure that the task code is reentrant, al are
declared auto (7). Each task runs as an infinite loop, and once this application is started,
HC/OS-11 will run indefinitely.

022-0047 Rev. A 4

022-0047 Rev. A 5

Example 2

This application runs exactly the same code as Example 1, except that each of the tasks are
created with 1024-byte stacks. The main difference between the two is the configuration
of uC/OS-I.

First, each configuration constant that differs from the library default is defined. The con-
figuration in this example differs from the default in that it allows only two events (the
minimum needed when using only one semaphore), 20 tasks, no queues, no mailboxes,
and the system tick rateis set to 32 ticks per second (1). Next, since this application uses
tasks with 1024 byte stacks, it is necessary to define the configuration constants differ-
ently than the library default (2). Notice that one 512 byte stack is declared. Every
Dynamic C program starts with an initial stack, and defining STACK_CNT_512 iscrucial
to ensure that the application has a stack to use during initialization and before multi-task-
ing begins. Finally ucos2. | i b isexplicitly used (3). This ensures that the definitionsin
(1 and 2) are used rather than the library defaults. The last step in initialization is to set
the number of ticks per second via OSSet Ti cksPer Sec (4).

The rest of this application isidentical to Example 1.

/1 1. Define each of the necessary configuration constants for uC/ OS-11

#def i ne OS_MAX_EVENTS 2
#def i ne OS_MAX_TASKS 20

#defi ne OS_MAX QS 0

#defi ne OS_Q EN 0

#def i ne OS_MBOX_EN 0

#def i ne OS_TI CKS_PER_SEC 32

/1l 2. Define each of the necessary stack configuration constants
#defi ne STACK CNT_512 1 /1 initial program stack
#def i ne STACK CNT_1K OS_MAX_TASKS // task stacks

// 3. This ensures that the above definitions are used
#use ucos2.lib

voi d RandomNunber Task(voi d *pdat a) ;

/1 Decl are semaphore global so all tasks have access
OS_EVENT* RandonSem

voi d main() {
int i;
// Initialize OGS internals
OSlnit();
for(i =0; i < OS_MAX TASKS; i++) {

/|l Create each of the system tasks
OSTaskCr eat e(RandomNunber Task, NULL, 1024, i);

}

022-0047 Rev. A 6

Rabbit Semiconductor

2932 Spafford Street

Davis, California 95616-6800
USA

Tel. (530)757-8400
FAX (530)757-8402

Web site: http://www.rabbitsemiconductor.com

022-0047 Rev. A

	How to Get a µC/OS-II Application Running
	Introduction
	Default Configuration
	Custom Configuration
	Examples

