
����������	

���� AN200

SPI Using the Rabbit Clocked Serial Ports

Serial Peripheral Interface (SPI)

The SPI is a four-wire full-duplex synchronous serial data link that is implemented in
many microcontrollers and peripheral devices. The SPI was originally developed by

Motorola1 to enable a glueless microcontroller interface with industry-standard serial
devices such as serial EEPROMs, data converters, liquid crystal displays, as well as other
peripherals and microcontrollers.

The SPI consists of shift registers that serially transmit and receive data at the same time.
For serial communication to take place within a SPI-based system, one device has to act as
a master and at least one other device has to act as a slave. In this form of communication,
the master device controls clock generation and the flow of data, while the slave or slave
units serially shift data in and out. Note that while one master device can transmit data to
multiple slaves, only one slave can transmit data back to the master at any particular time.
In a system where multiple microprocessors communicate with each other, the task of
being the master SPI device can be assigned to any processor within the system.

This application note provides a brief overview of master/slave SPI communication on the
Rabbit and prescribes general guidelines on how to configure the Rabbit as a master SPI.
The reason for focussing on the Rabbit as a master SPI is that, in most cases, the Rabbit
will be communicating as a master with one or more peripheral devices via the SPI.

SPI Pin Signals

There are normally four I/O signals associated with SPI transfers. Motorola refers to them
as Serial Clock (SCK), Master Out Slave In (MOSI), Master In Slave Out (MISO), and
Slave Select (SS). Table 1 shows the correspondence between the Motorola and Rabbit
SPI signals.
022-0038 Rev. B 1

SCK Signal

The Serial Clock signal functions differently depending on whether the processor is con-
figured as a master or as a slave. In addition to synchronizing data communication
between itself and a slave device, a master SPI automatically generates eight clock cycles
every time it initiates a transfer. The Read/Write operation takes place within the same
clock cycle in both the master and the slave devices. The Motorola SPI provides support
for a user-configurable clock edge polarity and clock phase to accommodate various SPI
transfer protocols. The Rabbit SPI is compatible with only one of the Motorola transmis-
sion formats, which is shown in Figure 1.

Figure 1. Rabbit-Compatible SPI Timing Diagram

Table 1. Correspondence between Motorola and Rabbit
SPI Signals (Master Mode)

Motorola
Signal Names

Rabbit
Signal Names

Pin Function

SCK CLKA or CLKB Serial Clock

MOSI
TXA or TXB on Parallel Port C*

ATXA or ATXB on Parallel Port D
Master Out Slave In

MISO
RXA or RXB on Parallel Port C

ARXA or ARXB on Parallel Port D
Master In Slave Out

SS
Any general-purpose I/O can be
configured for the Slave Select
function

Slave/Chip Select

* Serial Ports A and B can be multiplexed between Parallel Ports C and D; there-
fore, Serial Ports A or B can be only configured to operate via one of the paral-
lel ports at any particular time.

LSB BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 MSB

LSB BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 MSB

2 3 4 5 6 7 81CYCLE

CLKB

TXA

RXB

/SCS
(To Slave)

RX Capture Strobe

LSB
022-0038 Rev. B 2

MOSI and MISO

From the standpoint of the master, MOSI and MISO are basically transmit and receive sig-
nals. The signals have opposite roles when viewed from the slave device. In a system
where a single master communicates with multiple slaves, the clock signal from the mas-
ter is tied to the clock signal of every slave device, the transmit line from the master is tied
to the receive line of every slave, and only one slave device optionally shifts data back to
the master.

SS Signal

The behavior and function of the slave/chip select is different depending on whether the
device is configured as a master or a slave. In a master SPI device, the chip select nor-
mally acts as an active low output signal to enable or disable the slave device. Alterna-
tively, the master can be configured to treat the chip select signal as an error-detection
input.

SPI on the Rabbit

Of the four serial ports on the Rabbit, two can be configured for synchronous communica-
tion with SPI devices. Serial Ports A and B can be set up to operate in full- or half duplex
clocked serial modes. The Rabbit can interface with microprocessor or peripheral devices
that include a SPI for full-duplex synchronous serial communication. The Rabbit is capa-
ble of operating as either a master or a slave device in the SPI mode.

As a master device, the Rabbit provides the serial clock and initiates data transmission for
SPI communication; when the Rabbit is used as a slave device, the clock signal is an input
to the Rabbit, and data are shifted in and out of the Rabbit by the master. Regardless of
whether the Rabbit is used as a master or as a slave, data are trasmitted on the falling edge
of the clock, and the received data are sampled on the rising edge of the clock.

Depending on the type of slave select signal required, an available I/O port pin can be con-
figured to generate any type of fault error signal to the master or receive any type of slave
select notification from the master.

Figure 2 shows a typical full-duplex master/slave SPI-based system consisting of a Rabbit
master and multiple slave devices.
022-0038 Rev. B 3

Figure 2. Full-Duplex Master/Slave Based SPI System

Configuring the Rabbit for SPI Communication

Although Serial Ports A and B can both be configured for SPI communication, Serial Port A
is normally used as a programming and debugging port for Rabbit-based products. It is
therefore recommended that Serial Port B be used for SPI communication.

The following section outlines the steps necessary to configure Serial Port B on Parallel
Port C to operate in SPI mode:

1. Configure Parallel Port C Function Register (PCFR).

Setting bit 4 in PCFR will configure Parallel Port C for its Alternate Output function as
Serial Port B Output. Note that the output for the programming port (Serial Port A) is
also configured with PCFR; therefore, bit 6 must also be set so that the Serial Port A
output does not become disabled.

Table 2. Parallel Port C Function Register

Parallel Port x Function Register (PCFR) (Address = 055h)
Bit(s) Value Description

7:0 0 The corresponding port bit functions normally.

1
The corresponding port bit carries its alternate signal as an output. See
Table 3 below. Only the bits that have alternate functions listed in Table 3
actually have a control bit in these registers.

TX

CLKB

Shift Register
MOSI

MISO

SCK

Shift Register

Rabbit Master Slave Device 1

Slave Device n

Shift Register

RX

/SS1

/SSn

/SS1

/SSn

Shift Register

Clock Generator

SCK

MOSI

MISO
022-0038 Rev. B 4

Table 3. Alternate Output Function for Parallel Port C

2. Configure Timer A5.

There are two steps that need to be taken to configure Timer A5 to generate the clock
signal for Serial Port B. The first step is to load the Timer A5 Time Constant Register
(TAT5R) with a user-defined value. The timer times out twice for every bit that is
transmitted. For example, a time constant of 31 corresponds to 128 clock cycles for
each bit being transmitted, that is, 4x(31+1). The second step is to set bit 1 in the
Timer A Control/Status Register (TACSR) to enable the Timer A clock. Note that the
processor is already configured for serial communication in Rabbit-based products, and
so the main clock for Timer A is already enabled, making it unnecessary to enable the
main clock a second time.

Table 4. Timer A5 Time Constant Register

Table 5. Timer A Control/Status Register

Alternate Output
bit Port C

7

6 TXA

5

4 TXB

3

2 TXC

1

0 TXD

Timer A Time Constant 5 Register (TAT5R) (Address = abh)
Bit(s) Value Description

7:0 write

The time constant for the Timer A counter is stored. This time
constant will take effect the next time that the Timer A counter counts
down to zero. The timer counts modulo n+1, where n is the
programmed time constant.

Timer A Control/Status Register (TACSR) (Address = a0h)
Bit(s) Value Description

7:4,1

(rd-only)
0 The corresponding Timer A counter has not reached its terminal count.

1
The corresponding Timer A counter has reached its terminal count.
These status bits (not the interrupt enable bits) are cleared by the read of
this register, as is the Timer A interrupt.

7:4,1 0 The corresponding Timer A interrupt is disabled.

(wr-only) 1 The corresponding Timer A interrupt is enabled.

3:2 00 This bits are unused and always read as zeros.

0 0 The main clock for Timer A is disabled.

1 The main clock (CLK/2) for Timer A is enabled.
022-0038 Rev. B 5

3. Configure Serial Port B Control Register (SBCR).

Serial Port B can be configured to operate with or without interrupts. Interrupts can be
disabled or enabled, and a Serial Port interrupt priority can be assigned by setting bits 0
and 1 in the SBCR. The user must also decide on the source of the serial clock. If the
Rabbit is used as a master SPI device, bits 3 and 2 in the SBCR must be set to 11 so that
the clock signal is generated internally by the Rabbit. If the Rabbit is used as a slave,
bits 3 and 2 in the SBCR must be set to 10 so that the clock signal is generated exter-
nally by the master device. To instruct the processor which parallel port bit to use for
serial data input, reset bits 4 and 5 to zero. This action instructs the processor to use
Parallel Port C for input.

It is important to note that the commands to begin a transmit or receive operation are
not issued at this time, so bits 6 and 7 must be reset to zero.

Table 6. Serial Port B Control Register (SBCR)

The above steps outline how to configure Serial Port B for synchronous serial communi-
cation. The following steps describe the method, requirements, and restrictions for trans-
ferring a byte in the SPI mode.

Transmitting and Receiving Data in SPI Mode

4. Write transmit data.

After properly preparing the Rabbit for serial communication, the first byte of data to
be transmitted must be loaded into the Serial Port B Data register (SPDR). At this point
no data will be sent because the command to transmit data has not been issued yet.
Note that the commands to transmit and receive data are issued by writing to bits 6 and
7 in the SBCR; however, they must be issued in a certain sequence in order to guarantee
the timing required for full-duplex communication.

Serial Port B Control Register (SBCR) (Address = d4h)
Bit(s) Value Description

7:6 00 No operation. These bits are ignored in the async mode.

01 In clocked serial mode, start a byte receive operation.

10 In clocked serial mode, start a byte transmit operation.

5:4 00 Parallel Port C is used for input.

01 Parallel Port D is used for input.

1x Disable the receiver input.

3:2 00 Async mode with 8 bits per character.

01
Async mode with 7 bits per character. In this mode the most significant
bit of a byte is ignored for transmit, and is always zero in receive data.

10 Clocked serial mode with external clock.

11 Clocked serial mode with internal clock.

1:0 00 The Serial Port interrupt is disabled.

01 The Serial Port uses Interrupt Priority 1.

10 The Serial Port uses Interrupt Priority 2.

11 The Serial Port uses Interrupt Priority 3.
022-0038 Rev. B 6

5. Issue the transmit and receive commands.

The key to configuring Serial Port B for full-duplex communication is to perform two
writes to the control register. The data written to SBCR is the same in both cases
except for what is written to bits 6 and 7. The first time the command is issued, bit 7
must be set to start a byte-transmit operation; the second time, bit 6 must be set to start
a byte-receive operation. The two writes are necessary because the Rabbit has two sep-
arate shift registers, one for the transmitter and one for the receiver. Also note that the
sequence in which the commands are issued is very important. The TX command must
be issued first, followed within one-half bit time by the RX command. It is critical to
issue the RX command in time because once the clock is enabled and data are loaded in
the transmit buffer, the transmitter will start sending on the falling edge of the serial
clock and the receiver will start sampling on the rising edge of the serial clock. Main-
taining the proper timing relationship guarantees that data transmitted and received
occur within the same clock phase. The functional timing diagram in Figure 1 shows
the relationship among Serial Clock, Serial Data I/O, and Slave Chip Select. Note that,
depending on the type of slave device interfaced to the Rabbit, the slave may require
that the Slave Chip Select Line (/SCS) be toggled between each byte transmitted.

The maximum serial bit time depends on how fast the RX command is issued. The fol-
lowing sample code shows that the maximum serial bit time has to be slower than
eleven peripheral clocks, which is the time required to issue the RX command immedi-
ately following the TX command.

;*** Prepare Clocked Serial Port to receive a byte ******
ld hl,04dd4h ;(6-clocks) SBCR data: Int. Clk, Start Byte RX, INTR 1
ioi ld (hl),h ;(5-clocks) write to SBCR

6. Polled or interrupt-driven serial communication.

The decision to employ a polled or interrupt-driven scheme to handle transmit and
receive functions is entirely up to the user. The Rabbit contains hardware facilities to
support both. Polling is by far the easiest.

7. Interrupt-driven communication.

If an interrupt-driven scheme is used, there are a few issues that a user must pay atten-
tion to.

Because Serial Port B does not have separate vectors for receive and transmit inter-
rupts, when an interrupt occurs, the Serial Port B Status register (SBSR) must be read
every time to determine the cause of the interrupt.
022-0038 Rev. B 7

Table 7. Serial Port B Status Register (SBSR)

In the case of a transmit, an interrupt is generated when a byte (in this case the first
byte) is transferred from the buffer to the shift register; that is, when the buffer becomes
empty. (Note that the Rabbit employs one level of buffering on the serial ports.) Since
we’re not ready to send another byte, we have to clear the interrupt by performing a
dummy write to the Serial Port B Status Register (SBSR). The act of writing to the Sta-
tus Register clears the transmit interrupt.

Another point worth mentioning is that in SPI mode, the TX interrupt will occur one-
half bit clock later than the RX interrupt. The relationship between received and trans-
mitted data can be seen in Figure 1. Once it has been determined that the source of the
interrupt is the existence of data in the receive buffer, the received data must be stored,
and the next byte to be transmitted must be loaded into the transmit data register so that
a transmit command can be issued in time when the transmitter requests an interrupt
one-half bit clock later.

Serial Port x Status Register (SBSR) (Address = d3h)
Bit(s) Value Description

7 0 The receive data register is empty

1
There is a byte in the data register of the receiver. The serial port will
request an interrupt when the receiver sets this bit. The interrupt is
cleared when the receiver buffer is read.

6 0 The byte in the receiver buffer is data.

1 The byte in the receiver buffer is an address.

5 0 The receiver buffer was not overrun.

1
The receiver buffer was overrun. This bit is cleared when the
receiver buffer is read.

4 This bit is always zero.

3 0 The transmit data register is empty.

1

The transmit data register is full. The serial port will request an
interrupt when the transmitter clears this bit. The interrupt is cleared
when the transmit data register is written, or any value (which will be
ignored) is written to this register.

2 0 The transmitter is idle.

1

The transmitter is sending a byte. The serial port will request an
interrupt when the transmitter clears this bit, which occurs only if the
transmitter is ready to start sending another byte but the transmit
buffer is empty. The interrupt is cleared when the transmit data
register is written, or any value (which will be ignored) is written to
this register.

1:0 These bits are always zero.
022-0038 Rev. B 8

References

1. Motorola SPI Specifications, M68HC11 Reference Manual, Chapter 8, Pg. 8-1 through 8-22.
���������	�
���
���
�������������������
��������������������������
!�"

#��$�%�� &'�'��(
)"*�%�� &'�'��(�

+�������,�-���,..///$��������	�
���
���$
�	

022-0038 Rev. B 9

	AN200
	SPI Using the Rabbit Clocked Serial Ports
	Serial Peripheral Interface (SPI)
	SPI Pin Signals

	SPI on the Rabbit
	Configuring the Rabbit for SPI Communication
	Transmitting and Receiving Data in SPI Mode

	References

