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1. Introduction

This manual is intended for the engineer designing a system using the Rabbit microprocessor and 

Z-World’s Dynamic C development environment. It explains how to develop a Rabbit-based 

microprocessor system that can be programmed with Z-World’s Dynamic C.

With the Rabbit and Dynamic C, many traditional tools and concepts are obsolete. Complicated 

and fragile in-circuit emulators are unnecessary. EPROM burners are not needed. The Rabbit 
microprocessor and Dynamic C work together without elaborate hardware aids, provided that the 

designer observes certain design conventions. The design conventions are straight forward and 

enhance design creativity.

As shown in Figure1, the Rabbit programming cable connects a PC serial port to the programming 

connector of the target microprocessor system.

Figure 1. Dynamic C Programming 

PC Hosts Dynamic C Rabbit Programming
Cable

Programming
Connector

Target Microprocessor
System

Rabbit
Microprocessor

Level
Conversion

PC Serial
Port
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Figure 2.  Rabbit Programming Port

The Rabbit programming cable is a smart cable with an active circuit board in the middle of the 

cable. The circuit board converts RS-232 voltage levels used by the PC serial port to CMOS volt-
age levels used by the Rabbit. 

Dynamic C runs as an application on the PC, and can cold-boot the Rabbit-based target system 

with no pre-existing program installed in the target.  The flash memory on the target system can be 

blank or it may contain any data.  The cold-boot capability permits the use of soldered-in flash 

memory on the target.  Soldered-in memory eliminates sockets, boot blocks and prom program-
ming devices. However, it is important that the flash memory have its software data protection 

enabled before it is soldered in. 
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2. Hardware Design Overview

Because of the glueless nature of the external interfaces, especially the memory interface, it is easy 

to design hardware in a Rabbit-based system. More details on hardware design are given in the 

Rabbit 2000 Microprocessor User’s Manual.

2.1 Oscillator Crystals
Generally a system will have two oscillator crystals, a 32.768 kHz crystal to drive the battery-
backable timer, and another crystal that has a frequency of 1.8432 MHz or a multiple of 3.6864 

MHz. Typical values are 1.8432, 3.6864, 7.3728, 11.0592, 14.7456, 18.432, 25.8048, and 29.4912 

MHz. These crystal frequencies (except 1.8432 MHz) allow generation of standard baud rates up 

to at least 115,200 bps. The clock frequency can be doubled by an on-chip clock doubler, but the 

doubler should not be used to achieve frequencies higher than about 22.1184 MHz on a 5 V sys-
tem and 14.7456 MHz on a 3.3 V system. A quartz crystal should be used for the 32.768 kHz 

oscillator. For the main oscillator a ceramic resonator, accurate to 0.5%, will usually be adequate 

and less expensive than a quartz crystal.

2.2 Memory Chips
Most systems have one static RAM chip and one or two flash memory chips, but more memory 

chips can be used when appropriate. Static RAM chips are available in 32K x 8, 64K x 8, 128K x 

8, 256K x 8 and 512K x 8 sizes. The 256K x 8 is mainly available in 3 V versions.  The other 
chips are available in 5 V or 3 V versions. Suggested flash memory chips between 128K x 8 and 

512K x 8 are given in Chapter 10, Flash Memories.

2.3 Operating Voltages
The operating voltage in Rabbit-based systems will usually be 5 V or 3.3 V, but 2.7 V is also a 

possibility. The maximum computation per watt is obtained in the range of 3.0 V to 3.6 V.  The 

highest clock speeds require 5 V.  The maximum clock speed with a 3.3 V supply is 18.9 MHz, but 
it will usually be convenient to use a 7.3728 MHz crystal, doubling the frequency to 14.7456 

MHz. Good computational performance, but not the absolute maximum, can be implemented  for 
5 V systems by using an 11.0592 MHz crystal and doubling the frequency to 22.1184 MHz.  Such 

a system will operate with 70 ns memories. If the maximum performance is required, then a 

29.4912 MHz crystal or resonator (for a crystal this must be the first overtone, and may need to be 

special ordered) or a 29.4912 MHz external oscillator can be used. A 29.4912 MHz system will 
require 55 ns memory access time. A table of timing specification is contained in the Rabbit 2000 

Microprocessor User’s Manual.

When minimum power consumption is required, a 3.3 V power supply and a 3.6864 MHz or a 

1.8432 MHz crystal will usually be good choices. Such a system can operate at the main 3.6864 

MHz or 1.8432 MHz frequency either doubled or divided by 8 (or both).  A further reduction in 

power consumption at the expense of computing speed can be obtained by adding memory wait 
Designer’s Handbook 3



states.  Operating at 3.6864 MHz, such a system will draw approximately 11 mA at 3.3 V, not 
including the power required by the memory. Approximately 2 mA is used for the oscillator and 9 

mA is used for the processor.  Reducing the processor frequency will reduce current proportion-
ally. At 1/4th the frequency or (0.92 MHz) the current consumption will be approximately 4 mA.  
At 1/8th the frequency, (0.46 MHz) the total power consumption will be approximately 3 mA, not 
including the memories.  Doubling the frequency to 7.37 MHz will increase the current to approx-
imately 20 mA.

If the main oscillator is turned off and the microprocessor is operated at 32.768 kHz from the 

clock oscillator, the current will drop to about 200 µA exclusive of the current required by the 

memory.  The level of power consumption can be fine-tuned by adding memory wait states, which 

have the effect of reducing power consumption.  In order to obtain microampere level power con-
sumption, it is necessary to use auto powerdown flash memories to hold the executing code.  
Standby power while the system is waiting for an event can be reduced by executing long strings 

of multiply zero by zero instructions.  Keep in mind that a Rabbit operating at 3.68 MHz has the 

compute power of a Z180 microprocessor operating at approximately triple the clock frequency  

(11 MHz).

2.4 Through Hole Technology
Most design advice given for the Rabbit assumes the use of surface-mount technology. However, 
it is possible to use the older through hole technology and develop a Rabbit system. One can use 

Z-World’s Rabbit-based Core Module, a small circuit board with a complete Rabbit core that 
includes memory and oscillators. Another possibility is to solder the Rabbit processors by hand to 

the circuit board. This is not difficult and is satisfactory for low production volumes if the right 
technique is used.
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3. How Dynamic C Cold-Boots the
Target System

Dynamic C assumes that target controller boards using the Rabbit CPU have no pre-installed firm-
ware. It takes advantage of the Rabbit’s bootstrap (cold boot)  mode that allows memory and I/O 

writes to take place over the programming port.

When the programming cable connects a PC serial port to the user’s system the PC running 

Dynamic C is connected to the Rabbit as shown in Table 1.

The programming cable includes an RS-232 to CMOS signal level converter circuit.  The level 
converter is powered from the +5 V or  +3.3 V power supply voltage present on the Rabbit pro-
gramming connector (see Figure 7 on page 31).  Plugging the programming cable into the Rabbit 
programming connector results in pulling the Rabbit SMODE0, SMODE1 (startup mode) lines 

high.  This  causes the Rabbit to enter the cold-boot mode after reset.  

3.1 How the Cold Boot Mode Works In Detail
The microprocessor starts executing a 12-byte program contained in an internal ROM. The pro-
gram contains the following code.

; origin zero

00 ld l,n ; n=0c0h for serial port A

; n=020h for parallel (slave port)

02 ioi ld d,(hl) ; get address most sig byte

04 ioi ld e,(hl) ; get least sig byte

06 ioi ld a,(hl) ; get data (h is ignored)

08 ioi or nop ; if D(7)==1 ioi, else nop

09 ld (de),A ; store in memory or I/O

10 jr 0 ; jump back to zero

; note wait states inserted at bytes 3, 5 and 7 waiting

; for serial port or parallel port ready

Table 1.  Programming Port Connections

PC Serial Port Signal Rabbit Signal

DTR (output) /RESET (input, reset system)

DSR (input) STATUS (gen purpose output)

TX (serial output) RXA (serial input, chan A)

RX (serial input) TXA (serial output, chan A)
Designer’s Handbook 5



The contents of the boot ROM vary depending on the settings of SMODE1, SMODE2 and on the 

contents of register D bit 7 which determines if the store is to be an I/O store or a data store. If the 

boot is terminated by storing 80h to I/O register 24h then when the boot program reaches address 

zero the boot mode is disabled and instruction fetching resumes at address zero.

Wait states are automatically inserted during the fetching of bytes 3, 5 and 7 to wait for the serial 
or parallel port ready. The wait states continue indefinitely until the serial port is ready. This will 
cause the processor to be in the middle of an instruction fetch until the next character is ready. 
While the processor is in this state the chip select, but not the output enable, will be enabled if the 

memory mapping registers are such as to normally enable the chip select for the boot ROM 

address. The chip select will stay low for extended periods while the processor is waiting for the 

serial or parallel port data to be ready. Additionally, the chip select will go low when a write is per-
formed to an I/O address if the address is such as to enable that chip select if it were a write to a 

memory address.

3.2 Program Loading Process Overview
On start up, Dynamic C first uses the PC’s DTR line on the serial port to assert the Rabbit RESET 

line and put the processor in cold-boot mode. Next, Dynamic C uses a four stage process to load a 

user program:

1. Load an initial loader (cold loader) via triplets sent at 2400 baud from the PC to a target in 

cold-boot mode.

2. Run the initial loader and load a secondary loader (pilot BIOS) at 19200 baud.

3. Run the secondary loader and load the BIOS (as Dynamic C compiles it). 

4. Run the BIOS and load the user program at 115200 baud (after Dynamic C compiles it to a 

file).

3.3 Program Loading Process Details
When Dynamic C starts, the following sequence of events takes place:

1. The serial port is opened with the DTR line low, closed, then reopened with the DTR line high 

at 2400 baud. This pulses the reset line on the target low (the programming cable inverts the 

DTR line) and prepares the PC to send triplets. 

2. A group of triplets defined in the file COLDLOAD.BIN consisting of 2 address bytes and a data 

byte are sent to the target. The first few bytes sent are sent to I/O addresses to set up the MMU 

and MIU and do system initialization. The MMU is set up so that RAM is mapped to 0x00000, 
and flash is mapped to 0x80000.

3.  The remaining triplets place a small initial loader program at memory location 0x00000. The 

last triplet sent is 0x80, 0x24, 0x80, which tells the CPU to ignore the SMODE pins and start 
running code at address 0x00000. 

4.  The PC now bumps the baud rate on the serial port being used to 19200. 

5.  The primary loader measures the crystal speed to determine what divisor is needed to set a 

baud rate of 19200. The divisor is stored at address 0x4002 for later use by the BIOS, and the 

programming port is set up to be a 19200 baud serial port.
6 Rabbit 2000 Microprocessor



6.  The program enters a loop where it receives a fixed number of bytes which compose a second-
ary loader program (pilot.bin sent by the PC) and writes those bytes to memory location 

0x4100. After all of the bytes are received, program execution jumps to 0x4100.

7.  The secondary loader does a wrap-around test to determine how much RAM is available, and 

reads the flash ID. This information is made available for transmittal to Dynamic C when 

requested.

8. The secondary loader now enters a finite state machine (FSM) that is used to implement the 

Dynamic C/Target Communications protocol. Dynamic C compiles the core of the regular 
BIOS and sends it to the target at address 0x00000 which is still mapped to RAM. Note that 
this requires that the BIOS core be 0x4000 or less in size. 

9. The FSM checks the memory location 0x4001 (previously set to zero) after receiving each 

byte. When the compilation and loading to RAM of the BIOS is complete, Dynamic C signals 

the target that it is time to run the BIOS by sending a one to 0x4001. 

10.The BIOS runs some initialization code including setting up the serial port for 115200 baud, 
setting up serial interrupts and starting a new FSM. 

11.The BIOS code modifies a jump instruction near the beginning of the program so that the next 
time it runs, it will skip step 12.

12.The BIOS copies itself to flash at 0x80000, and switches the mapping of flash and RAM so that 
RAM is at 0x80000 and flash is at 0x00000. As soon as this remapping is done, the BIOS’ exe-
cution of instructions begins happening in flash. 

13.Dynamic C is now ready to compile a user program. When the user compiles his program to 

the target, it is first written to a file, then the file is loaded to the target using the BIOS’ FSM. 
The file is used as an intermediate step because fix-ups are done after the compilation is com-
plete and all unknown addresses are resolved. The fix-ups would cause extra wear on the flash 

if done straight to the flash. 

14.When the program is fully loaded, Dynamic C sets a breakpoint at the beginning of main and 

runs the program up to the breakpoint. The board has been programmed, and Dynamic C is 

now is debug mode.

15.If the programming cable is removed and the target board is reset, the user’s program will start 
running automatically because the BIOS will check the SMODE pins to determine whether to 

run the user application or enter the debug kernel. 
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4. Dynamic C Rabbit Programming
Overview

When Dynamic C compiles the user’s program to a target board, it includes a BIOS or basic input-
output system. The BIOS is a fairly small piece of code that provides a variety of low-level ser-
vices for the user’s program. The BIOS also takes care of microprocessor system initialization. 
The BIOS provides the communications services required by Dynamic C for downloading code 

and performing debugging services such as setting breakpoints or examining data variables.The 

BIOS defines the setup of memory. An existing BIOS can be used as a skeleton BIOS to create a 

new BIOS. Frequently it will only be necessary to change #define statements at the beginning 

of the BIOS. In this case it is unnecessary for the user to understand or work out the details of the 

memory setup and other processor initialization. 

Designers should follow Rabbit system design conventions so that Dynamic C can work with their 
system.

Design Conventions

• Include a standard Rabbit programming cable. The standard 10-pin programming connector 
provides a connection to serial port A and allows the PC to reset and cold-boot the target sys-
tem.

• Connect a static RAM having at least 32K to chip select #1 (/CS1, /OE1, /WE1).  It is useful if 
the PC board footprint can also accommodate a RAM large enough to hold all the code antici-
pated. If a large RAM can be accommodated, software development will go faster. Although 

code residing in some flash memory can be debugged, debugging and program download is 

faster to RAM. There are also types of flash memory that can be used, but they cannot support 
debugging.

• Connect a flash memory that is on the approved list and has at least 128K of storage to chip 

select #0 (/CS0, /OE0, /WE0). Nonapproved memories can be used, but it may be necessary to 

modify the BIOS. Some systems designed to have their program reloaded by an external agent 
on each powerup may not need any flash memory.

• Install a crystal or oscillator with a frequency of 32.768 kHz to drive the battery-backable clock. 
(Battery-backing is optional, but the clock is used in the cold-boot sequence to generate a 

known baud rate.)

• Install a crystal or oscillator for the main processor clock that is a multiple of 614.4 kHz, or bet-
ter, a multiple of 1.8432 MHz. These preferred clock frequencies make possible the generation 

of sensible baud rates. If the crystal frequency is a multiple of 614.4 kHz, then the same multi-
ples of the 19,200 bps baud rate are achievable. Common crystal frequencies to use are 3.6864, 
7.3728, 11.0592 or 14.7456 MHz, or double these frequencies.

The user may be concerned that the requirement for a programming connector places added cost 
overhead on the design. The overhead is very small—less than $0.25 for components and board 

space that could be eliminated if the programming connector were not made a part of the system.
Designer’s Handbook 9



The programming connector can also be used for a variety of other purposes, including user appli-
cations.  A device attached to the programming connector has complete control over the system 

because it can perform a hardware reset and load new software.  If this degree of control is not 
desired for a particular situation, then certain pins can be left unconnected in the connecting cable, 
limiting the functionality of the connector to serial communications.  Z-World will be developing 

products and software that assume the presence of the programming connector.

Dynamic C and a PC are not necessary for the production programming of flash memory since the 

flash memory can be copied from one controller to another by cloning. This is done by connecting 

the system to be programmed to the same type of system that is already programmed. This con-
nection is made with a cloning cable. The cloning cable connects to both programming ports and 

has a button to start the transfer of program and an LED to display the progress of the transfer. 

Dynamic C programming uses the Rabbit’s serial port A for software development. However, it is 

possible with some restrictions for the user’s application to also use port A.

4.1 Memory Organization
The Rabbit architecture is derived from the original Z80 microprocessor. The original Z80 instruc-
tion set used 16-bit addresses to address a 64K memory space. All code and data had to fit in this 

64K space. The Rabbit adopts a scheme similar to that used by the Z180 to expand the available 

memory space. The 64K space is divided into zones and a memory mapping unit or MMU maps 

each zone to a block in a larger memory; the larger memory is 1 megabyte in the case of the Z180 

or the Rabbit 2000. The zones are effectively windows to the larger memory. The view from the 

window can be adjusted so that the window looks at different blocks in the larger memory. 
Figure 3 on page 12 shows the memory mapping schematically.

The Rabbit has a 1-megabyte physical memory space. In special circumstances more than 1-mega-
byte of memory can be installed and accessed using auxiliary memory mapping schemes. Typical 
Rabbit systems have two types of physical memory: flash memory and static RAM memory. Flash 

memory follows a write-once-in-a-while and read-frequently model. Depending on the particular 
type of flash used, the flash memory will wear out after it has been written approximately 10,000 

to 100,000 times.

Rabbit flash memory may be small-sector type or large-sector type. Small-sector memory typi-
cally has sectors of 128 or 256 bytes. Individual sectors may be separately erased and written. In 

large-sector memory the sectors are often 16K or 64K or more. Small-sector memory provides 

better support for program development and debugging, and large-sector memory is less expensive 

and has faster access time. The best solution will usually be to lay out a design to accept several 
different types of flash memory, including the flexible small-sector memories and the fast large-
sector memories. At the present time development support for programs tested in flash memory is 

confined to flash memories with sectors of 256 bytes or 128 bytes. If larger sectors are used, the 

code must be debugged in RAM and then loaded to flash. Large-sector flash is desirable for the 

better access time and power consumption specifications that are available.

Static RAM memory may or may not be battery-backed. If it is battery-backed it retains its data 

when power is off. Static RAM chips typically used for Rabbit systems are 32K, 64K. 128K, 
256K, or 512K. When the memory is battery-backed, power is supplied at 2 V to 3 V from a 

backup battery. The shutdown circuitry must keep the chip select line high while preserving mem-
ory contents with battery power.
10 Rabbit 2000 Microprocessor



A basic Rabbit system has two static memory chips: one flash memory chip and one RAM mem-
ory chip. Additional static memory chips may be added. If an application requires storing data in 

flash memory, particularly a lot of data, another flash memory chip for the user’s data can be 

added, creating a system with three memory chips—two flash memory chips and one RAM chip. 
Trying to use a single flash memory chip to store both the user’s program and live data that must 
be frequently changed can create software problems. When data are written to a small-sector flash 

memory, the memory becomes inoperative during the 5 ms or so that it takes to write a sector. If 
the same memory chip is used to hold data and the program, then the execution of code must cease 

during this write time. The 5 ms is timed out by a small routine executing from root RAM while 

system interrupts are disabled, effectively freezing the system for 5 ms. The 5 ms lockup period 

can seriously affect real-time operation. 

From the point of view of a Dynamic C programmer, there are a number of different uses of mem-
ory. Each memory use occupies a different segment in the 16-bit address space. The four segments 

are shown in Figure 3 on page 12. 

The segments are named the base segment, the data segment, the stack segment, and the extended 

code segment. 

Note: Logical addresses above 0xDFFF are referred to as extended memory, and sometimes all of 
the logical memory below that is referred to as “root” memory. However, sometimes “root seg-
ment” is used to refer to the base segment.

• Root Code—Instructions in the base segment. Instructions may also be stored in the extended 

code segment. Code in the base segment operates slightly faster and plays a special role for cer-
tain special uses. The base segment is normally mapped to flash memory since the code does 

not change except when the system is reprogrammed.

• Root Constants—C constants, such as quoted strings or data tables are stored in flash memory 

in the base segment. This constants intermixed with root code. The constants only change when 

the system is reprogrammed. 

• Root Variables—Root variables are stored in the data segment which is mapped to RAM.  
Variables include C variables, including structures and arrays that are not initialized to a fixed 

value. 

• Stack Memory—Stack is implemented in the stack segment.  The stack segment is normally 

4K long and is always mapped to RAM.  Multiple stacks may be implemented by defining sev-
eral stacks in the 4k space or by remapping the 4K space to different locations in physical RAM 

memory, or by using both approaches. 

• Extended Code—Instructions not in root that often require 20-bit addressing for access.  These 

are accessed via the extended code segment, which is an 8K page for executing code.  Up to a 

megabyte of code can be executed by moving the mapping of the 8K window using special 
instructions (long call, long jump and long return) that are designed for this purpose.

• Extended Constants—Constant data not in root that requires 20-bit addressing for access.  
This is mixed together with the extended code.

• Extended Bulk Memory—Data items stored in multimegabyte memory and accessed using 

special functions using 32-bit addressing.
Code may be placed in either extended memory or root memory. Code executes slightly more effi-
ciently in root memory. In large programs the bulk of code is stored in extended code memory. 
Since root constants and root variables share the memory, space needed for root code, and as the 
Designer’s Handbook 11



memory needed for constants or variables increases, the amount of code that can be stored in root 
must decline by moving code to extended memory. The relative size of the base and data segments 

can be adjusted in 4K steps.

 

Figure 3.  Schematic Map of 16-bit Addressing Space

The Dynamic C memory mapping above shows that the Rabbit does not have a “flat” memory 

space. The advantage of the Rabbit’s memory organization is that the use of 16-bit addresses and 

pointers is retained, ensuring that the code is compact and executes quickly. 

4.1.1  The Base Segment
The base segment has a typical size of 24K. The larger the base segment, the smaller the data seg-
ment and vice-versa. Base segment address zero is always mapped to 20-bit address zero. Usually 

the base segment is mapped to flash memory. It may be mapped to RAM for debugging, or if it is 

decided to copy code to RAM to take advantage of faster access time offered by RAM. The base 

segment holds a mixture of code and constants. C functions or assembly language programs that 
are compiled to the base segment are interspersed with data constants. Data constants are inserted 

between blocks of code. Data constants defined inside a C function are put before the end of the 

code belonging to the function. Data constants defined outside of C functions are stored as 

encountered in the source code.

Except in small programs, the bulk of the code is executed using the extended memory window. 
But the base segment has special properties that make it better for some types of code. The types 

of subroutines and functions that are best placed in the base segment are as follows:

1. Short subroutines of about 20 instructions or less that are called frequently will use signifi-
cantly less execution time if placed in the root because of the faster calling linkage for 16-bit 
versus 20-bit addresses. A call and return using 16-bit addressing requires 20 clocks, compared 

to 32 clocks for 20-bit addressing.

2. Interrupt routines.  Interrupts use 16-bit addressing so the entry to an interrupt routine must be 

in root.
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3. Functions called indirectly using pointers. Functions in xmem may be called via a pointer, but 
the call will be routed through a root “bouncer” making it less efficient.

4. The BIOS core. A certain part of the BIOS must be at the start of the base segment.

4.1.2  The Data Segment
The data segment is mapped to RAM and contains C variables. Typically it starts at 8K or above 

and ends at 52K (0xCFFF). Data allocation starts at or near the top and proceeds in a downward 

direction. It is also possible to place executable code in the data segment if it is copied from flash 

to the data segment. This can be desirable for code that is self modifying, code to implement 
debugging aids or code that controls write to the flash memory and cannot execute from flash. In 

some cases RAM may require fewer wait states so code executes faster if copied to RAM.

4.1.3  The Stack Segment
The stack segment normally is from 52K to 56K (0xD000-0xDFFF). It is mapped to RAM and 

holds the system stack. If there are multiple stacks then multiple mappings with multiple stacks in 

each mapping can be used. For example if 16 stacks of 1k length are needed then 4 stacks can be 

placed in each 4k mapping and 4 different mappings for the window can be used.

4.1.4  The Extended Memory Segment
This 8K segment from 56K to 64K (0xE000-0xFFFF) is used to execute extended code and it is 

also used by routines that manipulate data located in extended memory. While executing code the 

mapping is shifted by 4K each time the code passes the 60K point. Large code can be efficiently 

executed while using up only 8K of the16-bit addressing space.

4.2 How The Compiler Compiles to Memory
The compiler generates code for root code, constants, extended code and extended constants. It 
allocates space for data variables, but, except for constants, does not generate data to be stored in 

memory. Any initialization of variables must be accomplished by code since the compiler is not 
present when the program starts in the field.

In all but the smallest programs, most of the code is compiled to extended memory. This code exe-
cutes in the 8K window from E000 to FFFF. This 8K window uses paged access. Instructions that 
use 16-bit addressing can jump within the page and also outside of the page to the remainder of the 

64K logical space. Special instructions, particularly lcall, ljp, and lret, are used to access 

code outside of the 8K window. When one of these transfer-of-control instructions is executed, 
both the address and the view through the 8K window change, allowing transfer to any instruction 

in the 1M physical memory space. The 8-bit XPC register controls which of two consecutive 4K 

pages the 8K window aligns with (there are 256 pages). The 16-bit PC controls the address of the 

instruction, usually in the region E000 to FFFF. The advantage of paged access is that most 
instructions continue to use 16-bit addressing. Only when a page change is needed does a 20-bit 
transfer of control need to be made. 

As the compiler compiles code in the extended code window, it checks at opportune times to see if 
the code has passed the midpoint of the window or F000. When the code passes F000, the com-
piler slides the window down by 4K so that the code at F000+x becomes resident at E000+x. This 

automatic paging results in the code being divided into segments that are typically 4K long, but 
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which can be very short or as long as 8K. Transfer of control within each segment can be accom-
plished by 16-bit addressing. Between segments, 20-bit addressing is required.
14 Rabbit 2000 Microprocessor



5. The Rabbit BIOS

The Dynamic C programming system for the Rabbit uses a BIOS (basic input output system). The 

BIOS is a separate program file that contains the code needed to interface with Dynamic C. It also 

normally contains a software interface to the user’s particular hardware. Certain drivers in the 

Dynamic C libraries require BIOS routines to perform tasks that are hardware-dependent. When 

the user compiles a program to a target board using Dynamic C, the BIOS is compiled first as an 

integral part of the user’s program.

A single general-purpose BIOS is supplied with Dynamic C for the Rabbit. This BIOS will allow 

you to boot Dynamic C on any Rabbit-based system that follows the basic design rules needed to 

support Dynamic C. The BIOS requires either both a flash memory and a 32K or larger RAM, or 
just a 128K RAM, for it to be possible to compile and run Dynamic C programs. If the user uses a 

flash memory from the list of flash memories that are already supported by the BIOS, the task will 
be simplified. If the flash memory chip is not already supported, the user will have to write a 

driver to perform the write operation on the flash memory. This is not difficult provided that a sys-
tem with 128K of RAM and the flash memory to be used is available for testing.

5.1 Startup Conditions Set Up By the BIOS
The BIOS sets up initial values for the following registers by means of code and declarations.

• The four memory bank control registers —MB0CR, MB1CR, MB2CR, and MB3CR—are 8-bit 
registers, each associated with one quadrant of the 1M memory space. Each register determines 

which memory chip will be mapped into its quadrant, how many wait states will be used for 
accessing that memory chip, and whether the memory chip will be write protected. 

• The STACKSEG register is an 8-bit register that determines the location of the stack segment in 

the 1M memory.

• The DATASEG register is an 8-bit register that determines the location of the data segment in 

the 1M memory, normally the location of the data variable space.

• The SEGSIZE register is an 8-bit register holding two 4-bit registers. Together the registers 

determine the relative size of the base segment, data segment and stack segment in the 64K root 
space.

• The MMIDR register is an 8-bit register used to force /CS1 to be always enabled or not. Having 

CS1 always enabled reduces power consumption.

• The XPC register is used to address extended memory. Normally the user’s code frequently 

changes this register. The BIOS sets the initial value.

• The SP register is the system stack pointer. It is frequently changed by the user’s code. The 

BIOS sets up an initial value.

All together there are 11 MMU, MIU registers that are set up by the BIOS. These registers determine 

all aspects of the hardware setup of the memory.

In addition, a number of origin declarations are made in the BIOS to tell the Dynamic C compiler 
where to place different types of code and data. The compiler maintains a number of assembly 
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counters that it uses to place or allocate root code, extended code, data constants, data variables, 
and extended data variables. Each of these counters has a starting location and a block size.

5.2 BIOS Flowchart
The following flowchart summarizes the functionality of the BIOS:

Figure 4.  BIOS Flowchart
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5.3 Internally Defined Macros
Some macros used in the BIOS are defined internally by Dynamic C before the BIOS is compiled. 
They are defined using tests done in the bootstrap loading, or by reading variables set in the GUI. 
These are:

_FLASH_, _RAM_  - Used for conditional compilation of the BIOS to distinguish between 

compiling to RAM and compiling to flash. These are set in the Options | Compiler menu.

_RAM_SIZE_, _FLASH_SIZE_  - Used to set the MMU registers and code and data sizes 

available to the compiler. The values given by these macros represent the number of 0x1000 

blocks of memory available.

_BOARD_TYPE_ - This is read from the System ID block or defaulted to 0x100 (the BL1810 

JackRabbit board) if no System ID block is present. This can be used for conditional compilation 

based on board type.  

5.4 Modifying the BIOS
The BIOS can be modified to be more specific concerning the user’s configuration. This can be 

done one step at a time, making it easy to detect any problems. The source code for the Universal 
BIOS is in BIOS\RABBITBIOS.C. Dynamic C uses this source code for the BIOS by default, 
but the user can specify another BIOS for Dynamic C to use in the Options | Compiler menu.

There are several macros at the top of RABBITBIOS.C that users may want to modify for boards 

they design or for special situations involving off-the-shelf Rabbit-based boards.

USE115KBAUD

The default value of 1 specifies that Dynamic C will communicate at 115,200 baud with the target. 
If this macro is set to zero, Dynamic C will communicate at 57,600 baud. The lower baud rate 

might be needed on some PCs that can not handle 115,200 baud. If this is changed to zero, the 

baud rate in Dynamic C Options|Communications should be changed to 57,600 also. 

CLOCK_DOUBLED

The default value of 1 causes the clock speed to be doubled if the crystal speed is less than or 
equal to 12.9 MHz. Setting this to zero means the clock speed will not be doubled. 

ENABLECLONING

The default value of 0 disables cloning. Setting this to 1 enables cloning and slightly increases the 

code size of the BIOS. If cloning is used, PB1 should be pulled up with 50K or so pull up resistor.

CLONINGBAUDRATE 

The default value of 1 makes cloning happen at 115,200 baud, zero makes the cloning baud rate 

57,600.

CLONEWHOLEFLASH

If this is set to 1, the entire primary flash except for the system ID block will be copied when clon-
ing.
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DATAORG

Beginning logical address for the data segment. The default is 0x6000. This should only be 

changed to multiples of 0x1000. Increasing it increases the root code space available, and 

decreases root data space, decreasing it has the opposite effect. It can changed to as low as 0x3000 

or as high as 0xB000.

RAM_SIZE 

This macro sets the amount of RAM available. The default value is the internally defined 

_RAM_SIZE_ The units are the number of 4k pages of RAM. In special situations, such as split-
ting RAM between two coresident programs, this may be modified to a smaller value than the 

actual available RAM. 

FLASH_SIZE 

This macro sets the amount of flash available. The default value is the internally defined 

_FLASH_SIZE_ The units are the number of 4k pages of flash. In special situations, such as 

splitting flash between two coresident programs, this may be modified to a smaller value than the 

actual available flash. 

CS1_ALWAYS_ON

Keeping CS1 active is useful if your system is pushing the limits of RAM access time. It will 
increase power consumption a little. Set to 0 to disable, 1 to enable

WATCHCODESIZE,WATCHDATASIZE

These define the number of bytes available to the debugger for compiling watch expression. The 

default values are 0x200/0x060. Decreasing these increases the amount of RAM available for root 
data.

NUM_RAM_WAITST, NUM_FLASH_WAITST

These define the number of wait states to be used for RAM and flash. The default value for both is 

0. The only valid values are 4, 2, 1 and 0.

MB0CR_INVRT_A18,  MB1CR_INVRT_A18,  MB2CR_INVRT_A18, MB3CR_INVRT_A18
MB0CR_INVRT_A19,  MB1CR_INVRT_A19,  MB2CR_INVRT_A19, MB3CR_INVRT_A19
These determine whether the MIU registers for each quadrant are set up to invert address lines A18 

and A19 after the logical to physical address conversion. This allows each 256K quadrant of phys-
ical memory access up to four 256k pages on the actual memory device. These would be used for 
special compilations of programs to be coresident on flashes between 512k and 1M in size. See 

application note 202, Rabbit Memory Management In a Nutshell, and application note 210, Run-
ning Two Application on a TCP/IP Development Board for more details.
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5.5 Origin Statements to the Compiler
The Dynamic C compiler uses the information provided by origin statements to decide where to 

place code and data in both logical and physical memory. The origin statements are normally 

defined in the BIOS; however, they may also be useful in an application program for certain tasks 

such as compiling a pilot BIOS or cold loader, or special situations where a user wants two appli-
cation coresident within a single 256K quadrant of flash.

5.5.1 Origin Statement Syntax
Prior to Dynamic C 7.05, origin statement syntax is:

#<origin type> <origin name> <segment value> <logical address>
<size> apply

All arguments are required.

Starting with Dynamic C 7.05, origin statement syntax (in BNF) is:

origin-directive : #origin-type identifier origin-designator

origin-designator : action-expression | origin-declaration

origin-declaration : physical-address size [follow-expression][action-expression][debug-expres-
sion]

origin-type: rcodorg | xcodorg | wcodorg | rvarorg 

follow-expression : follows identifier

action-expression : resume | apply

debug-expression : debug | nodebug | all

size : constant-expression

physical-address : constant-expression constant-expression

The non-terminals, identifier and constant-expressions, are defined in the ANSI C specification.

5.5.2 Origin Statement Semantics
An origin statement associates a code pointer and a memory region with a particular type of code. 
The type of code is specified by #origin-type. 

All code sections (rcodorg, xcodorg code and wcodorg) grow up. All non-constant data 

sections (rvarorg) grow down. Root constants are generated to the rcodorg region. xdata 

and xstring are generated to the current xcodorg region.

Table 2.  Origin types recognized by the compiler

origin type keyword

root code rcodorg

xmem code xcodorg

watch code wcodorg

root data rvarorg
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All origin statements must have a unique ANSI C identifier. The scope of this identifier is only with
other origin statements or declarations. In the pre 7.05 syntax this is the <origin name>.

Each memory region is defined by calculating a physical address from an 8-bit base address (first
constant-expression of physical-address) and a 16-bit logical address (second constant-expression of
physical-address). The size of the memory region is determined by 20-bit size. Overflow of these
three values is truncated. In the pre 7.05 syntax these three values are <segment value>,
<logical address> and <size>. 

The keywords apply and resume are action-expressions. They tell the compiler to generate code
or data in the memory region specified by identifier. An apply action resets the code or data
pointer for the specified region to the starting physical address of the region and makes the region
active. A resume action does not reset the code or data pointer, but does make the memory region
active. 

A region remains active (i.e., the compiler will continue to generate code or data to it) until
another region of the same origin-type is activated with an apply or resume action or until the
memory region is full.

The option follow-expression is best described with an example. First, let us declare yourcode 

in an origin statement containing an origin-declaration. A follow-expression can only name a 

region that has already been declared in an origin-declaration.

#rcodorg yourcode 0x0 0x5000 0x500

then the origin statement:

#rcodorg mycode 0x0 0x5500 0x500 follows yourcode

tells the compiler to activate mycode when yourcode is full. This action does an implicit 
resume on the memory region identified by yourcode. In this example, the implicit resume 

also generates a jump to mycode when yourcode is full. For data regions, the data that would 

overflow the region is moved to the region that follows. Combined data and code regions (like 

#rcodorg) use both methods, which one is used depends on whether code or data caused the 

region to overflow. In our example, if data caused yourcode to overflow, the data would be 

writtten to the memory region identified by mycode.

The optional debug-expression is only valid with the xcodorg origin-type. It tells the compiler to 

generate only debug or nodebug code in that physical memory region. If debug-expression is 

not specified, the declaration is treated as an all region. An all region can have both debug 

and nodebug code. Activating an all region (by using apply or resume) will cause both 

debug and nodebug regions to become inactive. If an all region is active, both debug and 

nodebug regions must be made active to entirely deactivate the all region. In other words, if an 

all region is active and a debug region is activated, any nodebug code will still be generated 

to the all region until a nodebug region is made active.

With regard to follow-expressions, a debug region may not follow a nodebug region or vice 

versa. An all region may follow either a debug or a nodebug region. Only an all region may 

follow another all region. This allows debug and nodebug regions to spill into a common 

all region.
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5.5.3 Origin Statement Examples
The diagram below shows how the origin statements define the mapping between the logical and
physical address spaces.

#define DATASEGVAL 0x91

#rvarorg rootdata (DATASEGVAL) 0xc5ff 0x6600 apply // grows down

#rcodorg rootcode 0x00 0x0000 0x6000 apply

#wcodorg watcode (DATASEGVAL) 0xc600 0x0400 apply

#xcodorg xmemcode 0xf8 0xe000 0x1a000 apply

// data declarations start here

Dynamic C defines macros that include information about compiling to RAM or flash and identify-
ing memory device types, memory sizes, and board type.  The origin setup shown above differs from
that included in the standard BIOS included with Dynamic C as the standard BIOS uses additional
macros values for dealing with a wider range of boards and memory device types.

 

5.5.4 Origin Directives in Program Code
To place programs in different places in root memory or to compile a boot strapping program, such 

as a pilot BIOS or cold loader, origin statements may be used in the user’s program code.

For example, the first line of a pilot BIOS program, pilot.c, would be

#rcodorg rootcode 0x0 0x0 0x6000 apply

A program with such an origin directive could only be compiled to a .bin file, because compiling it 
to the target would overwrite the running BIOS. 
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6. The System ID Block

The BIOS supports a system identification block to be placed at the top of flash memory. Identifi-
cation information for each device can be placed in it for access by the BIOS, flash driver, and 

users. This block will contain specific part numbers for the flash and RAM devices installed, the 

product’s serial number, Media Access Control (MAC) address if an Ethernet device, and so on. In 

addition, the ID block is designed with future expansion in mind by including a table version num-
ber and storing the block’s size in bytes within the block itself. Pointers for a “user block” of pro-
tected data exist as well, with the planned use for storage of calibration constants, etc., although 

the user may use it if desired.

Note that version 1 of the ID block (tableVersion = 0x01) has only limited functionality. In partic-
ular, only the following parameters are valid: tableVersion, productID, timestamp, 
macAddr, idBlockSize, idBlockCRC, and marker. Version 2 and later ID blocks have all 
the values filled with the exception of the flash and RAM speed fields, and Dynamic C versions 

7.04x2 and later support use of the user block.

If Dynamic C does not find an ID block on a device, the compiler will assume that it is a Z-World 

BL1810 (Jackrabbit) board.
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6.1 Definition
The following global struct is defined in IDBLOCK.LIB and is loaded from the flash device dur-
ing BIOS startup. Users can access this struct in RAM if they need information from it. The defi-
nition below is for a 128-byte ID block; the actual size can vary according to the value in 

idBlockSize. The reserved[] field will expand and/or shrink to compensate for the change 

in size.

typedef struct {
int tableVersion; // ver. num for this table layout
int productID; // Z-World part #
int vendorID; // 1 = Z-World
char timestamp[7]; // YY/M/D H:M:S
long flashID; // Z-World part #
int flashType; // Write method
int flashSize; // in 1000h pages
int sectorSize; // size of flash sector in bytes
int numSectors; // number of sectors
int flashSpeed; // in nanoseconds
long flash2ID; // Z-World part #, 2nd flash
int flash2Type; // Write method, 2nd flash
int flash2Size; // in 1000h pages, 2nd flash
int sector2Size; // byte size of 2nd flash's sectors
int num2Sectors; // number of sectors
int flash2Speed; // in nanoseconds, 2nd flash
long ramID; // Z-World part #
int ramSize; // in 1000h pages
int ramSpeed; // in nanoseconds
int cpuID; // CPU type identification
long crystalFreq; // in Hertz
char macAddr[6]; // Media Access Control (MAC) addr
char serialNumber[24]; // device serial number
char productName[30]; // null-terminated string
char reserved[1]; // reserved 4 later use - size can

// grow
long idBlockSize; // size of the SysIDBlock struct
int userBlockSize; // size of user block (directly

// below ID block)
int userBlockLoc; // offset of start of user block

// from this block
int idBlockCRC; // CRC of this block (when this

// field is set to zero)
char marker[6]; // should be 0x55 0xAA 0x55 0xAA

// 0x55 0xAA
} SysIDBlock;
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6.2 Access
The BIOS will read the system ID block during startup, so all a user needs to do is access the sys-
tem ID block struct in memory. If the user desires to read the ID block off the flash, the following 

function (from IDBLOCK.LIB) should be called:

int _readIDBlock(int flash_bitmap)

DESCRIPTION:

Attempts to read the system ID block from the highest flash quadrant and save it in the 

system ID block structure. It performs a CRC check on the block to verify that the block 

is valid. If an error occurs, SysIDBlock.tableVersion is set to zero.

PARAMETER

flash_bitmap Bitmap of memory quadrants mapped to flash. Examples:
0x01 = quadrant 0 only
0x03 = quadrants 0 and 1
0x0C = quadrants 2 and 3

RETURN VALUE:

  0: Successful
-1: Error reading from flash
-2: ID block missing
-3: ID block invalid (failed CRC check)

The WriteFlash() function does not allow writing to the ID block. If the ID block does need 

to be rewritten, contact Rabbit Semiconductor’s Technical Support. 

If the BIOS does not find an ID block, it sets all parameters in SysIDBlock to zero.

_readIDBlock
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6.3 Reading the ID block
The following sequence of events can be used to determine if an ID block is present:

1. The top 16 bytes of the flash device are read (the first two quadrants are mapped to flash, so 16 

bytes starting at address 0x7FFF0 will be read) into a local buffer. If the flash is smaller than 

512K, it doesn’t matter because 0x7FFF0 will still represent the start of the highest 16 bytes. 

2. The top six bytes of the buffer (read from 0x7FFF8-0x7FFFF) are checked for an alternating 

sequence of 0x55, 0xAA, 0x55, 0xAA, 0x55, 0xAA. If this is not found, the block does not 
exist and an error (-2) is returned.

3. The ID block size (=SIZE) is determined from the first 4 bytes of the 16-byte buffer.

4. A block of bytes containing all fields from the start of the SysIDBlock struct up to but not 
including the reserved field is read from flash at address 0x80000-SIZE, essentially filling the 

SysIDBlock struct except for the reserved field (since the top 16 bytes have been read ear-
lier).

5. The CRC field is saved in a local variable, then set to 0x0000. A CRC check is then calculated 

for the entire ID block except the reserved field and compared to the saved value. If they do not 
match, the block is considered invalid and an error (-3) is returned. The CRC field is then 

restored.

The reserved field is avoided in the CRC check since its size may vary, depending on the size of the
ID block.

Table 3.  The System ID Block

Offset from 

start of block
Size (bytes) Description

00h 2 ID block version number

02h 2 Product ID

04h 2 Vendor ID

06h 7 Timestamp (YY/MM/D/H/M/S)

0Dh 4 Flash ID

11h 2 Flash size (in 1000h pages)

13h 2 Flash sector size

15h 2 Number of sectors in flash

17h 2 Flash access time (nanoseconds)

19h 4 Flash ID, 2nd flash

1Dh 2 Flash size (in 1000h pages), 2nd flash

1Fh 2 Flash sector size, 2nd flash

21h 2 Number of sectors in 2nd flash

23h 2 Flash access time (nanoseconds), 2nd flash

25h 4 RAM ID
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29h 2 RAM size (in 1000h pages)

2Bh 2 RAM access time (nanoseconds)

2Dh 2 CPU ID

2Fh 4 Crystal frequency (Hertz)

33h 6 Media Access Control (MAC) address

39h 24 Serial number (as a null-terminated string)

51h 30 Product name (as a null-terminated string)

6Fh N Reserved (variable size)

SIZE - 10h 4 Size of this ID block

SIZE - 0Ch 2 Size of user block

SIZE - 0Ah 2 Offset of user block location from start of this block

SIZE - 08h 2 CRC value of this block (when this field = 0000h)

SIZE - 06h 6 Marker, should = 55h AAh 55h AAh 55h AAh

Table 3.  The System ID Block (Continued)

Offset from 

start of block
Size (bytes) Description
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7. BIOS Support for Program
Cloning

A program can be loaded into a controller by compiling it using Dynamic C. However, this is awk-
ward and slow in some situations. If cloning is enabled in the BIOS, a Rabbit-based system can 

copy itself to another controller. This is done by connecting the programming ports of the two con-
trollers together via the Cloning Board. See below.

Figure 5.  Cloning Board

If the cloning board is connected to the master the signal CLKA is held low. This is detected in the 

BIOS after the reset ends, and the cloning support of the BIOS is then invoked. The BIOS cold-
boots the target system by resetting it and downloading a primary boot program. The master then 

sends the entire BIOS over to the clone, where the boot program receives it and stores it in RAM 

(just like Dynamic C does when compiling the BIOS). A CRC check of the BIOS is performed on 

both the master and clone, and the results are compared. The clone is reset again, and the BIOS 

begins running. Finally, the master sends the user’s program at high speed, and the program is 

written to the flash memory. This data transfer can take place at 57,600 bps or 115,200 bps. When 

the entire flash contents (except for the system ID block) have been transferred, the target flashes 

the cable LED in a distinctive pattern to indicate that the programming is done. At that point the 

cloning board can be unplugged and plugged into another target. When the master is reset, it will 
program the next target.

Some Ethernet-enabled boards do not have the EEPROM with the MAC address, namely 

the RCM 2100, the RCM 2200 and the BL2000. These boards can still be used as a clone 

because the MAC address is in the system ID block and this structure is shipped on the 

board and is not overwritten by cloning. 
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If, however, you have a custom-designed board that does not have the EEPROM or the 

system ID block, you may call Z-World Technical Support for assistance in writing the 

system ID block to your board. 

Dial direct at: 1-530-757-373 or e-mail at support@zworld.com.

Enable Cloning Support in the BIOS

The BIOS did not support cloning until version 6.50. To enable cloning, two options must be 

set at the top of the BIOS. First, ENABLECLONING should be set to 1. If this is set, the BIOS will 
take up additional memory because of the functions required for cloning. The cloning baud rate is 

set by setting CLONINGBAUDRATE to 0 for 57,600 bps or 1 for 115,200 bps. 

By default, cloning will only copy the portion of the flash that contains the user’s program. To 

copy the entire flash device (if you have data stored elsewhere in the flash, for example) set the 

CLONEWHOLEFLASH option at the top of the BIOS to 1.

Ready to Clone

Once cloning is enabled, compile your program to flash, then detach the programming cable and 

attach the cloning board. Make sure the “master” end of the cloning board is connected to the mas-
ter controller (the cloning board is not reversible) and that pin 1 lines up correctly on both ends. 
Once this is done, reset the master by hitting Reset on the cloning board, and the cloning process 

will begin. While the cloning is occurring, the LED on the cloning board will blink several times 

per second; if the LED stops blinking then an error has occurred. Once the cloning is complete, the 

LED will blink in a distinctive pattern of four flashes, than a pause before four more flashes.

Different Flash Sizes

Cloning works between Master and clone controllers that have different size flash chips. However 
the Master does not know what sector size the target's flash uses. Since the Master copies its own 

universal flash driver to the clone, the Master BIOS must allocate a memory buffer sufficiently 

large to work on the clone. 

Root Memory Usage

The current implementation of cloning uses root memory for this buffer, which reduces the root 
memory available for the application program. The size of the buffer is given by the macro 

MAX_FLASH_SECTORSIZE. This macro is #defined near the top of the LIB\BIO-
SLIB\FLASHWR.LIB file. The default value is 1024 (4096 in older versions). The user can 

reduce this buffer size to the maximum of the master and clone's sector sizes if root data space is a 

problem, or increase it to 4096 if needed. Future implementations will use xmem for the buffer, so 

root data space will not be a problem.
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8. Low-Power Design and Support

To get the most computation for a given power level, the operating voltage should be approxi-
mately 3.3 V.  At a given operating voltage, the clock speed should be reduced as much as possible 

to obtain the minimum power consumption that is acceptable.

Some applications, such as a control loop, may require a continuous amount of computational 
power.  Other applications, such as slow data logging or a portable test instrument, may spend 

long periods with low computational requirements interspersed with short periods of high compu-
tational load.

The current (and thus power) consumption of a microprocessor-based system generally consists of 
a part that is independent of frequency and a part that depends on frequency. The part that is inde-
pendent of frequency consists of leakage or current or current drawn by special circuits such as 

pullup resistors or circuits that continuously draw power.  Ordinary CMOS logic uses power when 

it is switching from one state to another, and this is the power that is dependent on frequency.  The 

power drawn while switching is used to charge capacitance or is used when both N and P FETs are 

simultaneously on for a brief period during a transition. 

Floating inputs or inputs that are not solidly either high or low can also draw current because both 

N and P FETs are turned on at the same time. To avoid excessive power consumption, floating 

inputs should not be included in a design (except that some inputs may float briefly during power-
on sequencing).  Most unused inputs on the Rabbit can be made into outputs by proper software 

initialization to remove the floating property.  Pullup resistors will be needed on a few inputs that 
cannot be programmed as outputs.  An alternative to a pullup resistor is to tie an unused output to 

the unused inputs. If pullup (or pulldown) resistors are required, they should be made as large as 

possible if the circuit in question has a substantial part of its duty cycle with current flowing 

through the resistor.

Figure 6.  Rabbit Clock Distribution
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For extreme low-power operation it should be taken into account that some memory chips draw 

substantial current at zero frequency.  For example, a Samsung static RAM (part number 
KM684000BPL-7L) was found to draw 1 mA at 5 V when chip select and output enable were held 

enabled and all the other signals were held at fixed levels (a long read).   When the microprocessor 
is operating at the slowest frequency (32 kHz clock), the memory cycle is about 64 µs and the 

memory chip spends most of its time with the chip enable and output enable on.  The current draw 

during a long read cycle is not specified in most memory data sheets.  The Samsung chip, accord-
ing the data sheet, typically draws about 4 mA per megahertz when it is operating.  However, it 
appears that current consumption curve flattens out at about  250 kHz because of the constant 1 

mA draw during a long read.

In order to take full advantage of the Rabbit’s ultra slow sleepy execution modes, a memory that 
does not consume power during a static read is required. Advanced Micro Devices has a line of 3 

V flash memories (AM29LV010, AM29LV040) that power down automatically whenever the 

address (and control) lines do not change for a period of time slightly longer than the access time. 
These memories will consume on the order of 30 µA when operated at a data rate of 1/64 MHz.

Currently, Dynamic C does not allow debugging in with flash chips having sector sizes greater 
than 4096 bytes, nor do the flash drivers provided in the Dynamic C libraries support such flash 

chips. To use a large sector flash in your product design, you can debug your application in RAM 

by using the Compile to RAM compiler option, or use a board with small sector flash for develop-
ment only.

The Rabbit low-power sleepy mode of operation is achieved by switching the main clock to the 

32.768 kHz clock and then disabling the main oscillator. In this mode, the Rabbit executes about 3 

instructions every millisecond. Adding memory wait states can further slow the processor to about 
500 instructions per second or one every 2 ms. At these speeds the power consumed by the micro-
processor, exclusive of the 32.768 kHz oscillator, is very low, in the area of 50 µA to 100 µA. The 

Rabbit will generally test for some external event and leave sleepy mode when that event is 

detected. The 32.768 kHz oscillator is a major consumer of power, requiring approximately 80 µA 

at 3.3 V. This drops dramatically to about 18 µA at 2.2 V.   For the lowest standby power it may be 

desirable to use an external oscillator to generate the 32.768 kHz clock. The Intersil (formerly 

Harris) part HA7210 can be used to construct a 32.768 kHz oscillator that consumes approxi-
mately 5 µA at 3.3 V.

For the very lowest power consumption the processor can execute a long string of mul instruc-
tions with the de and bc registers set to zero.  Few if any internal registers change during the exe-
cution of a string of mul zero by zero, and a memory cycle takes place only once in every 12 

clocks.  By combining all these techniques it may be possible to get the sleepy current under 50 

µA.
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8.1 Software Support for Low-Power Sleepy Modes
In sleepy mode the microprocessor executes instructions too slowly to support most interrupts. 
The serial ports can function but cannot generate standard baud rates since the system clock is at 
32.768 kHz. The 48-bit battery backable clock continues to operate without interruption. 

Usually the programmer will want to reduce power consumption to a minimum, either for a fixed 

time period or until some external event takes place. On entering sleepy mode by calling use 

32kHzOsc(), the periodic interrupt is completely disabled, the system clock is switched to 

32.768 kHz, and the main oscillator is powered down. On exiting sleepy mode by calling use 

MainOsc(), the main oscillator is powered up, a time delay is inserted to be sure that it has 

resumed regular oscillation, and then the system clock is switched back to the main oscillator. At 
this point the periodic interrupt is reenabled. Data will probably be lost if interrupt-driven commu-
nication is attempted while in sleepy mode.

While in sleepy mode the user has available a routine, updateTimers(), that can be called 

periodically to keep Dynamic C time variables updated. These time variables keep track of sec-
onds and milliseconds and are normally used by Dynamic C routines to measure time intervals or 
to wait for a certain time or date. This routine reads the real-time clock and then computes new 

values for the Dynamic C time variables. The normal method of updating these variables is the 

periodic interrupt that takes place 2048 times per second.

8.2 Baud Rates in Sleepy Mode
The available baud rates in sleepy mode are 1024, 1024/2, 1024/3, 1024/4, etc. (The baud rate 

113.77 is available as 1024/9 and may be useful for communicating with other systems operating 

at 110 bps - a 3.4% mismatch.  In addition the standard PC compatible UART 16450 with a baud 

rate divider of 113 generates a baud rate of 1019 bps, a 0.5% mismatch with 1024 bps. Baud rate 

mismatches of up to 5% may be tolerated.)  If there is a large baud rate mismatch, the serial port 
can usually detect that a character has been sent to it, but not read the exact character.
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9. Memory Planning

The following requirements should be considered when planning memory configuration for a Rab-
bit system.

• The size of the code anticipated. Usually code size up to 512K is handled by one flash 

memory chip. Static data tables can be conveniently placed in the same space using the 

xdata and xstring declarations supported by Dynamic C, so the amount of space 

needed for static data can be added to the amount of space needed for code. If you are 

writing a program from scratch, remember that 512K of code is equivalent to 25,000 to 

50,000 C statements, and such a large program can take years to write.

• C programs vary in how much RAM will be required. Many programs can subsist on 

32K of RAM. Having more RAM on the system is convenient for debugging since 

debugging and program testing generally operates more powerfully and faster when 

sufficient RAM is available to hold the program and data. For this reason, most Z-
World controllers based on the Rabbit use a dual footprint for RAM that can accommo-
date either a 32K x 8, which is in a 28-pin package, or a 128K x 8 or 512K x 8, which is 

in a 32-pin package. The base RAM is interfaced to /CS1 and /WE1, and /OE1. RAM is 

required for the following items.

Root variables—maximum of 48K.

Stack pages—rarely more than 20K.

RAM for debugging convenience on prototype units—512K is usually enough to 

accommodate programs.

RAM for extended memory, such as data logging applications or communications 

applications—amount needed depends on application.  

9.1 Making a RAM-only board.
Some Rabbit customers are designing boards that have only a single RAM chip and no flash mem-
ory. Although this is not generally recommended, it may be safe to use only a RAM chip as long 

as the board has a continuous power supply and is set up to be field-programmable via the Rabbit 
bootstrap mode.  

For example, a Rabbit board in a noncritical system such as a lawn sprinkler system may be moni-
tored from a remote location via the Internet or Ethernet, where the remote monitor has the ability 

to reload the application program to the board. One way to achieve field programmability is with 

the RabbitLink Network Gateway.

There are certain hardware and software changes that are required to make this work which are 

discussed here. Dynamic C starting with version 6.57 has the software files discussed here which 

are necessary to make a RAM only board work.
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9.1.1  Hardware Changes
Ordinarily, CS0/OE0/WE0 of the Rabbit processor are connected to a flash chip, and 

CS1/OE1/WE1 are connected to RAM. However, if only RAM is to be used, CS0/OE0/WE0 must 
be connected the RAM. This is because on power up or reset, the Rabbit will begin fetching 

instructions from whatever is hooked up to CS0/OE0/WE0.

9.1.2  Software Changes
In order to program a RAM only board from Dynamic C or the Rabbit Field Utility (RFU), several 
changes are needed. When Dynamic C or the RFU first start, they put the Rabbit based target 
board in bootstrap mode where it awaits data sent via “triplets.” These programs then send triplets 

that map the lowest quadrant of physical memory to CS1/OE1/WE1 in order to load a primary 

loader to RAM. The first set of triplets loaded to the target is contained in a file called cold-
load.bin. A different coldload.bin is required in order to map the lowest memory quadrant to 

CS0/OE0/WE0. The image file for this program is \BIOS\RAMONLYCOLDLOAD.BIN. To use it, 
rename BIOS\COLDLOAD.BIN to BIOS\COLDLOAD.BAK, and rename \BIOS\RAMONLY-
COLDLOAD.BIN to \BIOS\COLDLOAD.BIN. (Later versions of Dynamic C may have a GUI 
method of choosing the cold loader.)

The primary loader loads a secondary loader, which doesn’t affect the memory mapping. The sec-
ondary loader loads the Rabbit BIOS to RAM (from the application program image file in the case 

of the RFU, by compiling the BIOS straight to the target  in the case of Dynamic C.)  One of the 

first things the BIOS does in program mode is copy itself to flash, and then transfer execution to 

the flash copy. When the board powers up later without the programming cable attached, it will 
start running the BIOS in flash.

The special BIOS file \BIOS\RAMONLYBIOS.C eliminates the self copy step and initializes the 

MIU/MMU correctly to match the hardware configuration. This BIOS can be selected as the user-
defined BIOS by using the Options | Compiler menu item.
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10. Flash Memories

The flash memories listed in Table 3 below have been qualified for use with the Rabbit 2000 

microprocessor.

Table 4.  32-Pin Flash Memories Supported by the Rabbit 2000

Vendor
Device 

Name

Device 

Size
(bytes)

Sector 

Size
(bytes)

Number 

of 
Sectors

Write 

Mode

Best 
Access 

Time
(ns)

Operating 

Voltage
(V)

Package 

Typesa
Dynamic 

C Version

tmel AT29C1024 64K 128 512 sector 70 4.5–5.5 5, 6
7.02 and 

laterb

tmel AT29LV1024 64K 128 512 sector 150 3.0–3.6 5, 6
7.02 and 

laterb

tmel AT29C010 128K 128 1024 sector 70 4.5–5.5 1, 2, 4 All

tmel AT29LV010 128K 128 1024 sector 150 3.0–3.6 2, 4 All

tmel AT29BV010 128K 128 1024 sector 200 2.7–3.6 2, 4
7.02 and 

laterb

tmel AT29C020 256K 256 1024 sector 70 4.5–5.5 1, 2, 4
6.50 and 

later

tmel AT29LV020 256K 256 1024 sector 200 3.0–3.6 2, 4
6.50 and 

later

tmel AT29BV020 256K 256 1024 sector 250 2.7-3.6 2, 4
7.02 and 

laterb

tmel AT29C040 512K 256 2048 sector 120 4.5–5.5 1, 4
6.50 and 

later

tmel AT29LV040 512K 256 2048 sector 200 3.0–3.6 4
6.50 and 

later

osel/Vitelic
V29C51001T

V29C51001B
128K 512 256 byte 45 4.5–5.5 1, 2, 4

6.50 and 

later

osel/Vitelic V29LC51001 128K  512 256 byte 90 4.5–5.5 1, 2
7.02 and 

laterb

osel/Vitelic
V29C51002T

V29C51002B
256K 512 512 byte 55 4.5–5.5 1, 2, 4

6.50 and 

later

osel/Vitelic V29LC51002 256K  512 512 byte 90 4.5–5.5 1, 2
7.02 and 

laterb

osel/Vitelic
V29C51004T

V29C51004B
512K 1024 512 byte 70 4.5–5.5 2, 4

6.50 and 

later
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a. Package Types:
1.  32-pin PDIP
2.  32-pin PLCC
3.  32-pin TSOP (8 mm × 14 mm)
4.  32-pin TSOP (8 mm × 20 mm)
5.  44-pin PLCC
6.  48-pin TSOP (8 mm × 14 mm)

b. These flash devices are supported as of Dynamic C 7.02, but have not been tested.

c. Dynamic C Versions 6.04-6.1x:
The FLASH_SIZE parameter in the JRABBIOS.C file needs to be changed to reflect the correct 
number of 4K pages for the selected device. By default, the FLASH_SIZE parameter contains a 0x20 

that corresponds to a 128K x 8 device with thirty-two 4K pages of flash.Dynamic C versions 6.5x and 

greater determine the flash size automatically and no code change is required.

osel/Vitelic
V29C31004T

V29C31004B
512K 1024 512 byte 90 3.0–3.6 2, 4

7.02 and 

laterb

ST SST29EE512 64K 128 512 sector 70 4.5–5.5 1, 2, 3, 4
6.50 and 

laterc

ST SST29LE512 64K 128 512 sector 150 3.0–3.6 1, 2, 3, 4
6.50 and 

laterc

ST SST29EE010 128K 128 1024 sector 90 4.5–5.5 1, 2, 3, 4 All

ST SST29LE010 128K 128 1024 sector 150 3.0–3.6 1, 2, 3, 4 All

ST SST29EE020 128K 128 2048 sector 120 4.5–5.5 1, 2, 3, 4
7.02 and 

laterb

ST SST29LE020 128K 128 2048 sector 200 3.0–3.6 1, 2, 3, 4
7.02 and 

laterb

ST  SST39SF010 128K 4096 32 byte 70 4.5–5.5 1, 2, 3
7.02 and 

laterb

ST  SST39SF020 256K 4096 64 byte 45 4.5–5.5 1, 2, 3
6.50 and 

later

ST  SST39SF040 512K 4096 128 byte 45 4.5–5.5 1, 2, 3
7.02 and 

laterb

inbond W29CEE011 128K 128 1024 sector 90 4.5–5.5 1, 2, 4
7.02 and 

laterb

inbond W29C020CT 256K 128 2048 sector 70 4.5–5.5 1, 2, 4 Allc

inbond W29C040 512K 256 2048 sector 90 4.5–5.5 2, 4
7.02 and 

laterb

Table 4.  32-Pin Flash Memories Supported by the Rabbit 2000

Vendor
Device 

Name

Device 

Size
(bytes)

Sector 

Size
(bytes)

Number 

of 
Sectors

Write 

Mode

Best 
Access 

Time
(ns)

Operating 

Voltage
(V)

Package 

Typesa
Dynamic 

C Version
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10.1 Supporting Other Flash Devices
If a user wishes to use a flash memory not listed in Table 3 but still uses the same standard write 

sequences as one of the supported flash devices, the existing Dynamic C flash libraries may be 

able to support it simply by modifying a few values in the BIOS. Specifically, three modifications 

need to be made:

1. The flash device needs to be added to the list of known flash types. This table can be found by 

searching for the label FlashData in the file 

LIB\BIOSLIB\FLASHWR.LIB. The format is described in the file and consists of the flash 

ID code, the sector size in bytes, the total number of sectors, and whether the flash is written 

one byte at a time or one entire sector at a time.

2. Near the top of the main BIOS file (BIOS\RABBITBIOS.C for most users), in the line
#define FLASH_SIZE _FLASH_SIZE_ change _FLASH_SIZE_ to a fixed value for 
your flash (the total size of the flash in 4096-byte pages).

3. If a version of Dynamic C prior to 7.02 is being used, the macro _SECTOR_SIZE_ near the 

top of LIB\BIOSLIB\FLASHWR.LIB needs to be hard-coded in a manner similar to step 2 

above. In the line 

#define MAX_FLASH_SECTORSIZE _SECTOR_SIZE_
_SECTOR_SIZE_ should be replaced with the sector size of your flash in bytes.

Note that the BIOS only supports flashes with equally-sized sectors of either 64, 128, 256, 512, 
1024, or 4096 bytes. If your flash device does not fall into that category, it may be possible to sup-
port it by rewriting the BIOS flash functions; see the next section for more information.

10.2 Writing Your Own Flash Driver
If a user wishes to install a flash memory not listed in Table 3 that cannot be supported by follow-
ing the steps in the above section (for example, if it uses a completely different unlock/write 

sequence), custom functions need to be written for the new flash. This section explains the 

requirements of these two user-written functions.

_InitFlashDriver

Called from the BIOS, this function initializes all the necessary values for the flash 

driver. The memory quadrants that are mapped to flash memory are passed to it as a bit-
map, i.e., 0x01 = the first quadrant, 0x02 = the second quadrant, 0x0C = the topmost 
two quadrants, and so on.

_WriteFlash

The low-level sector writing function -- the user will normally call the WriteFlash 

function. This function writes one sector of data from RAM to flash memory, aligned 

along a flash sector boundary.
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Below is the C struct used by the Z-World flash driver to hold the required information about 
the flash memory installed. The _InitFlashDriver function is called early in the BIOS to 

fill this struct before any accesses to the flash.

struct {
char flashXPC; // XPC required to access flash via XMEM
int sectorSize; // byte size of one flash memory sector
int numSectors; // number of sectors on flash
char writeMode; // write method used by the flash
void *eraseChipPtr; // pointer to erase chip function in RAM

// eraseChipPtr is currently unused
void *writePtr; // ptr to write flash sector function (RAM)

} _FlashInfo;

The field flashXPC contains the XPC required to access the first flash physical memory location 

via XMEM address E000h. The pointer writePtr should point to a function in RAM to avoid 

accessing the flash memory while working with it. You will probably be required to copy the func-
tion from flash to a RAM buffer in the flash initialization sequence.

The field writeMode specifies the method that a particular flash device uses to write data. Cur-
rently, only two common modes are defined: “sector-writing” mode, as used by the SST SST29 

and Atmel AT29 series (writeMode=1); and “byte-writing” mode, as used by the Mosel/Vitelic 

V29 series (writeMode=2). All other values of writeMode are currently undefined, although 

they may be defined by Z-World as new flash devices are used.

The required actions of these functions are listed below:

_InitFlashDriver

This function is called from the BIOS. A bitmap of quadrants mapped to flash (0x01, 0x02, 0x04, 
0x08 correspond to the 1st-4th quadrants) is passed to it in HL. This function needs to perform the 

following actions:

1. Load _FlashInfo.flashXPC with the proper XPC value to access flash memory address 

00000h via XMEM address E000h. The quadrant number for the start of flash memory is 

passed to the function in HL and can be used to determine the XPC value, if desired. For exam-
ple, if your flash is located in memory quadrant 2 then the physical address of the first flash 

memory location is 80000h. 80000h - E000h = 72000h, so the value placed into
_FlashInfo.XPC should be 72h.

2. Load _FlashInfo.sectorSize with the flash sector size in bytes.

3. Load _FlashInfo.numSectors with the number of sectors on the flash.

4. _FlashInfo.writePtr should be loaded with the memory location in RAM of the func-
tion that will perform that action. The function will need to be copied from flash to RAM at this 

time as well.

5. This function should return zero if successful, or -1 if an error occurs.
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_WriteFlash

This function writes exactly one sector of data from a buffer in RAM to the flash memory. It is 

called from the BIOS as well as several libraries, and should be written to conform to the follow-
ing requirements:

• For versions of Dynamic C prior to 7.02, it should assume that the source data is 

located at the logical RAM address passed in BC. In all later versions of Dynamic C, a 

fixed 4096-byte block of XMEM is used for the flash buffer, which can be accessed via 

macros located at the top of FLASHWR.LIB. These macros include FLASH_BUF_PHYS, 
the unsigned long physical address of the buffer; FLASH_BUF_XPC and 

FLASH_BUF_ADDR, the logical address of the buffer via the XMEM window; and 

FLASH_BUF_0015 and FLASH_BUF_1619, the physical address of the buffer broken 

down to be used with the LDP opcodes.

• It should assume that the flash address to be written to is passed as an XMEM address 

in A:DE. The destination must be aligned with a flash memory sector boundary.

• It should check to see whether the sector being written to is an ID block. If so, it should 

exit with an error code (see below). Otherwise, it should perform the actual write oper-
ation required by the particular flash used.

• Interrupts should be turned off (set the interrupt level to 3) whenever writes are occur-
ring to the flash. Interrupts should not be turned back on until the write is complete -- 
an interrupt may attempt to access a function in flash while the write is occurring and 

fail.

• It should not return until the write operation is finished on the chip.

• It should return a zero in HL if the operation was successful, a -3 if a timeout occurred 

during the wait, or a -4 if an attempt was made to write over the ID block.

Modifications to Dynamic C are pending to allow use of large sector (>4096) flashes in debug-
ging. To incorporate a large-sectored flash into an end product, the best strategy is have a small-
sectored development board. 
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11. Hardware Bring-Up Procedure

When a user designs a new microprocessor system around the Rabbit and carefully follows the 

Rabbit design conventions, it is possible that the system will not boot up when Dynamic C is con-
nected to the programming connector. This can happen because of a design error or even because 

of a random hardware defect in the new system.  A hardware procedure is available to make it eas-
ier to debug systematically in such a situation.

 A series of steps may be performed in order to diagnosis a problem that keeps Dynamic C from 

booting. 

11.1 Initial Checks 

Perform the following checks with the /RESET (pin 37) line tied to ground.

• With a voltmeter check for the +5 V or other operating voltage on pins 3,28,53,78,92 

and 42. Check for ground on pins 2,27,39,52,77,89.

• With an oscilloscope check the 32.768 kHz oscillator on XTALA2 (pin 41). Make sure 

that it is oscillating and that the frequency is correct. 

• With an oscilloscope check the main system oscillator by observing the signal CLK 

(pin 1). With the reset held low this signal should have a frequency one eighth of the 

main crystal or oscillator frequency.

11.2 Diagnostic Test #2 

This test goes through a series of steps repeatedly. The steps are:

1. Apply the reset for approximately 1/4 second and then release the reset.

2. In cold boot send the following sequence of triplet characters to serial port A via the program-
ming connector. 

80 0E 20 // sets status pin low

80 0E 30 // sets status pin high

80 0E 20 // sets status pin low again

3. Wait for approximately 1/4 second and then repeat starting at step #1

While the test is running, an oscilloscope can be used to observe the results. The scope can be trig-
gered by the reset line going high. It should be possible to observe the data characters being trans-
mitted on the RXA pin of the processor or the programming connector. The status pin can also be 

observed at the processor or programming connector. Each byte transmitted has 8 data bits pre-
ceded by a start bit which is low and followed by a stop bit which is high (viewed at the processor 
or programming connector). The data bits are high for 1 and low for 0. 

The cold boot mode and the triplets sent are described in Section 3.1 on page 5. Each triplet con-
sists of a 2-byte address and a 1-byte data value. The data value is stored in the address specified. 
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The uppermost bit of the 16-bit address is set to one to specify an internal I/O write. The remain-
ing 15 bits specify the address. If the write is to memory then the uppermost bit must be zero and 

the write must be to the first 32k of the memory space. The user should see the 9 bytes transmitted 

at 2400 bps or 416 µs per bit. The status bit will initially toggle fairly rapidly during the transmis-
sion of the first triplet because the default setting of the status bit is to go low on the first byte of 
an opcode fetch. While the triplets are being read instructions are being executed from the small 
cold boot program within the microprocessor. The status line will go low after the first triplet has 

been read. It will go high after the second triplet is finished. It will return to low again after the 3rd 

triplet is transmitted. and stay that way until the sequence starts again. 

If this test fails to function it may be that the programming connector is connected improperly or 
the proper pull-up resistors are not installed on the SMODE lines. Other possibilities are that one 

of the oscillators is not working or is operating at the wrong frequency. The reset could be failing. 

11.3 Diagnostic Test #3 

This test checks the functioning of the RAM connected to /CS1/OE1/WE1. The test applies the 

reset, then sends a series of triplets to set up the necessary control registers. Then it writes several 
instructions to RAM. Finally it begins executing instructions in RAM. These instructions disable 

the watchdog timer.

80 14 05 //set MB0CR to 1 to select RAM
80 09 51 //ready watchdog for disable
80 09 54 //disable watchdog timer

//sequence of triplets to write program below to memory
// starting at address zero.

00 01 21
00 02 01
00 03 00
00 04 06
00 05 10
00 06 7e
00 07 29
00 08 10
00 09 FC
00 0A C3
00 0B 00
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80 24 80 //terminate bootstrap, start at address zero

;test program
ld hl,1
ld b,16

loop:
ld a,(hl)
add hl,hl ; shift left
djnz loop ; 16 steps
jp 0 ; continue test

If this test runs it will toggle the first 16 address lines. In addition, all of the data lines must be 

functioning or the program would not execute correctly. 
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Appendix A. Supported Rabbit 2000
Baud Rates

This table contains divisors to put into TATxR registers. All frequencies that allow 57600 baud up 

to 30MHz are shown (as well as a few higher frequencies):

This information is calculated with the following equation:

divisor = (crystal frequency in Hz) / (32 * baud rate) - 1

If the divisor is not an integer value, that baud rate is not available for that frequency (identified by 

a “-” in the table).

If the divisor is above 255, that baud rate is not available without further BIOS modification (iden-
tified by a “*” in the table).  To allow that baud rate, you need to clock the serial port desired via 

Crystal 
Freq. (MHz)

Example Board
2400 

baud
9600 

baud
19200 

baud
57600 

baud
115200 

baud

1.8432 23 5 2 0 -

3.6864 47 11 5 1 0

5.5296 71 17 8 2 -

7.3728 Jackrabbit, not doubled 95 23 11 3 1

9.2160 Core Module, not doubled 119 29 14 4 -

11.0592 143 35 17 5 2

12.9024 167 41 20 6 -

14.7456 Jackrabbit, doubled 191 47 23 7 3

16.5888 215 53 26 8 -

18.4320 Core Module, doubled 239 59 29 9 4

20.2752 * 65 32 10 -

22.1184 * 71 35 11 5

23.9616 * 77 38 12 -

25.8048 * 83 41 13 6

27.6480 * 89 44 14 -

29.4912 29MHz Jackrabbit * 95 47 15 7

36.8640 * 119 59 19 9

44.2368 * 143 71 23 11
Designer’s Handbook 47



timer A (by default they run off the CPU clock / 2), then scale down timer A to make the serial 
port divisor fall below 256.
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Appendix B. Wait State Bug

B.1 Overview of the Bug
A bug associated with the use of memory wait states was discovered in the Rabbit 2000 processor 
approximately 13 months after the product was introduced. This bug was not discovered previ-
ously because the use of wait states in situations that evoke the problem is unusual. A number of 
modifications to Dynamic C starting with version 7.05 have been made to make it easy, or in some 

cases automatic, to avoid problems created by the bug. The bug manifests when memory wait 
states are used during certain instruction fetches or during certain read operations. The data read 

instructions are the simpler case and we will describe them first.

Wait states for I/O devices work normally and are not associated with this problem. 

B.2 Wait States In Data Memory
The two instructions LDDR and LDIR are repeating instructions that move a block of data in mem-
ory. If wait states are enabled, then one wait state less than specified is used on every data read 

except the first one in the block. This can be corrected in either of two ways.

An additional wait state can be specified, which will cause there to still be sufficient wait states 

when one is lost, or a directive can be issued to the Dynamic C compiler to automatically substi-
tute different instructions for LDDR or LDIR which accomplish the same operation.

The directive is:

#pragma DATAWAITSUSED on
#pragma DATAWAITSUSED off

This will cause Dynamic C to substitute code as follows:

ldir

becomes

call ldir_func

and 

lddr

becomes

call lddr_func

This change causes the block move to proceed at 11 clock cycles per byte (on average) rather than 

7 clock cycles per byte. 

For small memory blocks (<45 bytes), it is more efficient to write the following code:

start_ldi: ldi
jp nov, start_ldi

start_ldr: ldr
jp nov, start_ldr
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B.3 Wait States in Code Memory
There are two manifestations of the wait state bug in code memory. If wait states are enabled, there 

are certain instructions that will execute incorrectly and there are certain other instructions whose 

use will reduce the length of the output enable signal.

B.3.1 Instructions Affected by the Wait State Bug
If wait states in code memory are enabled, the 20 instructions in the table below execute incor-
rectly and should not be used:

These insructions work correctly if there are zero wait states. If wait states are desired, equivalent 
instructions work without any problem. For example:

SRA (IX+8) ; 13 clocks

can be replaced by:

LD B,(IX+8) ; 9 clocks
SRA B ; 4 clocks
LD(IX+8),B ; 10 clocks

Any of the registers A, H, L, D, E, B, C can be used to hold the intermediate value, so you should 

be able to find a free register.

For:

BIT 3,(IX+4) ; 10 clocks

use:

LD B,(IX+4) ; 9 clocks
BIT 3,B ; 4 clocks

set b, (ix+d) set b, (iy+d)

res b, (ix+d) res b, (iy+d)

bit b, (ix+d) bit b, (iy+d)

rl (ix+d) rl (iy+d)

rlc (ix+d rlc (iy+d)

rr (ix+d) rr (iy+d)

rrc (ix+d) rrc (iy+d)

sla (ix+d) sla (iy+d)

sra (ix+d) sra (iy+d)

srl (ix+d) srl (iy+d)
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If the atomic nature of the operation is important then the operation can be shifted to the hl index 

register. For example:

SET 3,(IX+4)

Use instead:

PUSH HL
PUSH DE
LD HL,IX
LD DE,4
ADD HL,DE
SET 3,(HL)
POP DE
POP HL

 B.3.1.1 Dynamic C version 7.05
Starting with version 7.05, Dynamic C does not generate any of the instructions in the table above, 
and they are not used in the library routines. If any of these instructions are used in an application 

program, a warning will be generated by the compiler.

 B.3.1.2 Prior versions of Dynamic C
In versions of Dynamic C prior to 7.05, the library, SLICE.LIB, contains one of these instruc-
tions: bit b,(iy+d). Do not use wait states with slice statements in these earlier versions of 
Dynamic C. If any of the instructions in the table above are used in an application program, no 

warning is generated and you are on your own. 

B.3.2 Output Enable Signal and Conditional Jumps
If wait states are enabled for code memory, the memory output enable signal is shortened by one 

clock cycle for the first byte read after any conditional jump instruction that does not jump. This is 

not the same as losing a wait state, and in some cases the shortened output enable signal will not 
cause a problem. The  conditional jump instructions are:

jp cc, mn cc (condition code) is one of the following:
NZ, Zero flag not set;
Z, Zero flag set;
NC, Carry flag not set;
C, Carry flag set; 
LZ, Logical/Overflow flag is not set; 
LO, Logical/Overflow flag is set; 
P, Sign flag not set;
M, Sign flag set

jr cc, e cc (condition code) is one of the following:
NZ, Zero flag not set;
Z, Zero flag set;
NC, Carry flag not set;
C, Carry flag set;

djnz e
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 B.3.2.1 Workaround for Wait State Bug with Conditional Jumps
One way to compensate for the shortened output enable signal is to add one more wait state than 

would otherwise be needed. An example of the memory access with the shortened output enable 

signal is shown in the figure below.

B.3.3 Output Enable Signal and Mul Instruction
If wait states are enabled for code memory, the length of the output enable signal is reduced to a 

single clock cycle for the first instruction byte fetch after a multiply (mul) instruction. This is the 

length the output enable signal would be if there were zero wait states. The read of this byte is 

always a long read cycle (the same as 10 wait states) since it is shared with the execution of 
mul.This effectively precludes the use of mul with wait states unless the following condition is 

met: the length of time from the start of the output enable signal to when the data becomes ready 

to sample is less than 1 clock cycle - 9 nanoseconds.

If the clock doubler is used alternate clocks may have slightly different lengths and a slightly 

stricter standard may need to be applied.

B.3.4 Alternatives to Wait States in Code Memory
If the code memory is slow and requires wait states at a certain clock speed, the simplist alterna-
tive is to lower the clock speed so that no wait states will be required. Lowering the clock speed to 

2/3 of its previous value has the same effect as adding one wait state. Lowering the clock speed to 

1/2 is the same as 2 wait states. Lowering the clock speed to 1/3 is the same as 4 wait states.The 

clock speed can be cut in half by turning of the clock doubler. The clock speed can be divided by 8 

by enabling the clock divider.

Another way to avoid wait states is to run normally with the clock doubler enabled, and when you 

need to execute code from the slower memory turn off the clock doubler. This doubles the length 

of the memory cycle, which is equivalent to adding 2 wait states. 

chip select

address

output enable

lost part of output enable
signal Wait State Bug Memory Read, 1 Wait State
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B.4 Enabling Wait States
Memory wait states can be specified independently for each of 4 different addressing zones in the 

memory space. The 4 memory bank control registers (MBxCR) control the wait states inserted for 
memory accesses in each zone. The number of wait states can be programmed as 0, 1, 2 or 4. The 

principle reasons for enabling memory wait states are:

1. During startup of the Rabbit 2000, wait states are automatically set to 4 wait states. 
Unless it has been modified, the BIOS promptly sets the processor to zero wait states.

2. Enabling wait states can be used as a strategy for reducing power consumption. This 

can still be done if the restrictions and work-arounds detailed in this chapter are 

adhered to. For example,  you don’t use the 20 instructions that execute incorrectly.

3. A slow flash memory used for data storage may be interfaced to the processor as a 

memory device and it may require wait states. This will still work as long as only data 

accesses are made to the memory. If instructions are to be executed from the memory, 
then the restrictions and work-arounds detailed in this chapter must be adhered to. 

B.5 Summary
In a typical design implementation, wait states are not used for access to the main instruction 

memory. Normally the processor clock speed is selected so that with zero wait states the processor 
memory cycle is matched with the instruction memory access time. Hence, the wait state bug will 
not be encountered by most users. 

If the memory used is fast enough to run at zero wait states and the 20 failing instructions are not 
used, then inserting wait states will not cause problems. Thus, when the Rabbit starts up after a 

reset and maximum wait states are enabled there will not be a problem. Nor will there be a prob-
lem if wait states are inserted to conserve power. Controller boards produced by Z-World or Rab-
bit Semiconductor will not experience the wait state bug unless the default setup in the BIOS is 

overridden.

Z-World flash write routines may move code into RAM memory and execute it there in order to 

perform a write on the flash code memory. These routines automatically avoid any wait state bug 

problems.

Wait states in memory used for data are not a problem because of the compiler directive that can 

be used to avoid the bug. There is no reason to avoid wait states for data memory.
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 Legal Notice

Rabbit Semiconductor products are not authorized for use as critical components in life-
support devices or systems unless a specific written agreement regarding such intended 

use is entered into between the customer and Rabbit Semiconductor prior to use. Life-sup-
port devices or systems are devices or systems intended for surgical implantation into the 

body or to sustain life, and whose failure to perform, when properly used in accordance 

with instructions for use provided in the labeling and user’s manual, can be reasonably ex-
pected to result in significant injury.

No complex software or hardware system is perfect. Bugs are always present in a system 

of any size. In order to prevent danger to life or property, it is the responsibility of the sys-
tem designer to incorporate redundant protective mechanisms appropriate to the risk in-
volved.
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