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1. Introduction

This manual isintended for the engineer designing a system using the Rabbit microprocessor and
Z-World's Dynamic C development environment. It explains how to develop a Rabbit-based
microprocessor system that can be programmed with Z-World's Dynamic C.

With the Rabbit and Dynamic C, many traditional tools and concepts are obsolete. Complicated
and fragile in-circuit emulators are unnecessary. EPROM burners are not needed. The Rabbit
microprocessor and Dynamic C work together without elaborate hardware aids, provided that the
designer observes certain design conventions. The design conventions are straight forward and
enhance design creativity.

Asshown in Figurel, the Rabbit programming cable connects a PC serial port to the programming
connector of the target microprocessor system.

PC Hosts Dynamic C

Rabbit Programming Rabbit
Cable Microprocessor
/
Level

Conversion

Target Microprocessor
System

PC Serial Programming
Port Connector

Figure 1. Dynamic C Programming
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Figure 2. Rabbit Programming Port

The Rabbit programming cable is a smart cable with an active circuit board in the middle of the
cable. The circuit board converts RS-232 voltage level s used by the PC serial port to CMOS volt-
age levels used by the Rabbit.

Dynamic C runs as an application on the PC, and can cold-boot the Rabbit-based target system
with no pre-existing program installed in the target. The flash memory on the target system can be
blank or it may contain any data. The cold-boot capability permits the use of soldered-in flash
memory on the target. Soldered-in memory eliminates sockets, boot blocks and prom program-
ming devices. However, it is important that the flash memory have its software data protection
enabled before it is soldered in.
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2. Hardware Design Overview

Because of the glueless nature of the external interfaces, especially the memory interface, it is easy
to design hardware in a Rabbit-based system. More details on hardware design are given in the
Rabbit 2000 Microprocessor User’'s Manual.

2.1 Oscillator Crystals

Generally a system will have two oscillator crystals, a 32.768 kHz crystal to drive the battery-
backable timer, and another crystal that has a frequency of 1.8432 MHz or a multiple of 3.6864
MHz. Typical values are 1.8432, 3.6864, 7.3728, 11.0592, 14.7456, 18.432, 25.8048, and 29.4912
MHz. These crysta frequencies (except 1.8432 MHZz) allow generation of standard baud rates up
to at least 115,200 bps. The clock frequency can be doubled by an on-chip clock doubler, but the
doubler should not be used to achieve frequencies higher than about 22.1184 MHz on a5V sys-
tem and 14.7456 MHz on a 3.3 V system. A quartz crystal should be used for the 32.768 kHz
oscillator. For the main oscillator a ceramic resonator, accurate to 0.5%, will usually be adequate
and less expensive than a quartz crystal.

2.2 Memory Chips

Most systems have one static RAM chip and one or two flash memory chips, but more memory
chips can be used when appropriate. Static RAM chips are available in 32K x 8, 64K x 8, 128K x
8, 256K x 8 and 512K x 8 sizes. The 256K x 8 ismainly availablein 3V versions. The other
chipsare availablein 5V or 3 V versions. Suggested flash memory chips between 128K x 8 and
512K x 8 are given in Chapter 10, Flash Memories.

2.3 Operating Voltages

The operating voltage in Rabbit-based systemswill usualy be 5V or 3.3V, but 2.7V isalso a
possibility. The maximum computation per watt is obtained in therange of 3.0V t0 3.6 V. The
highest clock speedsrequire 5V. The maximum clock speed witha 3.3V supply is 18.9 MHz, but
it will usually be convenient to use a7.3728 MHz crystal, doubling the frequency to 14.7456
MHz. Good computational performance, but not the absolute maximum, can be implemented for
5V systems by using an 11.0592 MHz crystal and doubling the frequency to 22.1184 MHz. Such
asystem will operate with 70 ns memories. If the maximum performance is required, then a
29.4912 MHz crystal or resonator (for a crystal this must be the first overtone, and may need to be
special ordered) or a29.4912 MHz external oscillator can be used. A 29.4912 MHz system will
require 55 ns memory accesstime. A table of timing specification is contained in the Rabbit 2000
Microprocessor User’'s Manual.

When minimum power consumption isrequired, a3.3 V power supply and a 3.6864 MHz or a

1.8432 MHz crystal will usually be good choices. Such a system can operate at the main 3.6864
MHz or 1.8432 MHz frequency either doubled or divided by 8 (or both). A further reductionin
power consumption at the expense of computing speed can be obtained by adding memory wait
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states. Operating at 3.6864 MHz, such a system will draw approximately 11 mA at 3.3 V, not
including the power required by the memory. Approximately 2 mA is used for the oscillator and 9
mA isused for the processor. Reducing the processor frequency will reduce current proportion-
ally. At 1/4th the frequency or (0.92 MHz) the current consumption will be approximately 4 mA.
At 1/8th the frequency, (0.46 MHz) the total power consumption will be approximately 3 mA, not
including the memories. Doubling the frequency to 7.37 MHz will increase the current to approx-
imately 20 mA.

If the main oscillator is turned off and the microprocessor is operated at 32.768 kHz from the
clock oscillator, the current will drop to about 200 pA exclusive of the current required by the
memory. Thelevel of power consumption can be fine-tuned by adding memory wait states, which
have the effect of reducing power consumption. In order to obtain microampere level power con-
sumption, it is necessary to use auto powerdown flash memories to hold the executing code.
Standby power while the system is waiting for an event can be reduced by executing long strings
of multiply zero by zero instructions. Keep in mind that a Rabbit operating at 3.68 MHz hasthe
compute power of a Z180 microprocessor operating at approximately triple the clock frequency
(11 MHz2).

2.4 Through Hole Technology

Most design advice given for the Rabbit assumes the use of surface-mount technology. However,
it is possible to use the older through hole technology and develop a Rabbit system. One can use
Z-World's Rabbit-based Core Module, asmall circuit board with a complete Rabbit core that
includes memory and oscillators. Another possibility isto solder the Rabbit processors by hand to
the circuit board. Thisis not difficult and is satisfactory for low production volumesif the right
technique is used.

4 Rabbit 2000 Microprocessor



3. How Dynamic C Cold-Boots the
Target System

Dynamic C assumes that target controller boards using the Rabbit CPU have no pre-installed firm-
ware. It takes advantage of the Rabbit’s bootstrap (cold boot) mode that allows memory and I/0O
writes to take place over the programming port.

When the programming cable connects a PC serial port to the user’s system the PC running
Dynamic C is connected to the Rabbit as shown in Table 1.

Table 1. Programming Port Connections

PC Serial Port Signal Rabbit Signal
DTR (output) /RESET (input, reset system)
DSR (input) STATUS (gen purpose output)
TX (serial output) RXA (seria input, chan A)
RX (serial input) TXA (serial output, chan A)

The programming cable includes an RS-232 to CMOS signal level converter circuit. The level
converter is powered fromthe +5V or +3.3 V power supply voltage present on the Rabbit pro-
gramming connector (see Figure 7 on page 31). Plugging the programming cable into the Rabbit
programming connector resultsin pulling the Rabbit SMODEO, SMODEL (startup mode) lines
high. This causes the Rabbit to enter the cold-boot mode after reset.

3.1 How the Cold Boot Mode Works In Detall

The microprocessor starts executing a 12-byte program contained in an internal ROM. The pro-
gram contains the following code.

; origin zero
00 Id1l,n ; n=0cOh for serial port A

; n=020h for parallel (slave port)
02 ioi Idd,(hl) ; get address nobst sig byte
04 ioi Id e, (hl) ; get least sig byte
06 ioi Ida,(hl) ; get data (h is ignored)

08 ioi or nop ; if D(7)==1io0i, else nop
09 Id (de),A ; store in nmenmory or 1/0O
10 jr O ; junp back to zero

; note wait states inserted at bytes 3, 5 and 7 waiting
; for serial port or parallel port ready
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The contents of the boot ROM vary depending on the settings of SMODE1, SMODEZ2 and on the

contents of register D bit 7 which determinesif the storeisto be an I/O store or adata store. If the
boot is terminated by storing 80h to 1/0 register 24h then when the boot program reaches address

zero the boot mode is disabled and instruction fetching resumes at address zero.

Wait states are automatically inserted during the fetching of bytes 3, 5 and 7 to wait for the seria
or parallel port ready. The wait states continue indefinitely until the serial port is ready. Thiswill
cause the processor to be in the middle of an instruction fetch until the next character is ready.
While the processor isin this state the chip select, but not the output enable, will be enabled if the
memory mapping registers are such asto normally enable the chip select for the boot ROM
address. The chip sdlect will stay low for extended periods while the processor iswaiting for the
seria or parallel port datato be ready. Additionally, the chip select will go low when awriteis per-
formed to an 1/O address if the address is such as to enable that chip sdlect if it were awriteto a
memory address.

3.2 Program Loading Process Overview

On start up, Dynamic C first uses the PC's DTR line on the serial port to assert the Rabbit RESET

line and put the processor in cold-boot mode. Next, Dynamic C uses afour stage processto load a

user program:

1. Load aninitial loader (cold loader) viatriplets sent at 2400 baud from the PC to atarget in
cold-boot mode.

2. Runtheinitial loader and load a secondary loader (pilot BIOS) at 19200 baud.
3. Run the secondary loader and load the BIOS (as Dynamic C compilesit).

4. Run the BIOS and load the user program at 115200 baud (after Dynamic C compilesit to a
file).

3.3 Program Loading Process Details
When Dynamic C starts, the following sequence of events takes place:

1. The serial port is opened with the DTR line low, closed, then reopened with the DTR line high
at 2400 baud. This pulses the reset line on the target low (the programming cable inverts the
DTR line) and prepares the PC to send triplets.

2. A group of triplets defined in the file COLDLOAD. Bl N consisting of 2 address bytes and a data
byte are sent to the target. The first few bytes sent are sent to I/O addresses to set up the MMU
and MIU and do system initialization. The MMU is set up so that RAM is mapped to 0x00000,
and flash is mapped to 0x80000.

3. Theremaining triplets place asmall initial loader program at memory location 0x00000. The
last triplet sent is 0x80, 0x24, 0x80, which tells the CPU to ignore the SMODE pins and start
running code at address 0x00000.

4. The PC now bumps the baud rate on the serial port being used to 19200.

5. The primary loader measures the crystal speed to determine what divisor is needed to set a
baud rate of 19200. The divisor is stored at address 0x4002 for later use by the BIOS, and the
programming port is set up to be a 19200 baud serial port.
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6. The program enters aloop where it receives a fixed number of bytes which compose a second-
ary loader program (pi | ot . bi n sent by the PC) and writes those bytes to memory location
0x4100. After all of the bytes are received, program execution jumps to 0x4100.

7. The secondary loader does a wrap-around test to determine how much RAM is available, and
reads the flash ID. Thisinformation is made available for transmittal to Dynamic C when
reguested.

8. The secondary loader now enters a finite state machine (FSM) that is used to implement the
Dynamic C/Target Communications protocol. Dynamic C compiles the core of the regular
BIOS and sendsit to the target at address 0x00000 which is still mapped to RAM. Note that
this requires that the BIOS core be 0x4000 or lessin size.

9. The FSM checks the memory location 0x4001 (previously set to zero) after receiving each
byte. When the compilation and loading to RAM of the BIOS is complete, Dynamic C signals
the target that it is time to run the BIOS by sending a one to 0x4001.

10.The BIOS runs some initialization code including setting up the serial port for 115200 baud,
setting up seria interrupts and starting a new FSM.

11.The BIOS code modifies ajump instruction near the beginning of the program so that the next
timeit runs, it will skip step 12.

12.The BIOS copiesitself to flash at 0x80000, and switches the mapping of flash and RAM so that
RAM isat 0x80000 and flash is at 0x00000. As soon as this remapping is done, the BIOS' exe-
cution of instructions begins happening in flash.

13.Dynamic C is now ready to compile a user program. When the user compiles his program to
the target, it isfirst written to afile, then the file isloaded to the target using the BIOS FSM.
Thefileisused as an intermediate step because fix-ups are done after the compilation is com-
plete and all unknown addresses are resolved. The fix-ups would cause extra wear on the flash
if done straight to the flash.

14.When the program is fully loaded, Dynamic C sets a breakpoint at the beginning of main and
runs the program up to the breakpoint. The board has been programmed, and Dynamic C is
now is debug mode.

15.If the programming cable is removed and the target board is reset, the user’s program will start
running automatically because the BIOS will check the SMODE pins to determine whether to
run the user application or enter the debug kernel.
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4. Dynamic C Rabbit Programming
Overview

When Dynamic C compiles the user’s program to atarget board, it includes a BIOS or basic input-
output system. The BIOS isafairly small piece of code that provides avariety of low-level ser-
vices for the user’s program. The BIOS also takes care of microprocessor system initialization.
The BIOS provides the communications services required by Dynamic C for downloading code
and performing debugging services such as setting breakpoints or examining data variables. The
B1OS defines the setup of memory. An existing BIOS can be used as a skeleton BIOS to create a
new BIOS. Frequently it will only be necessary to change #def i ne statements at the beginning
of the BIOS. In this case it is unnecessary for the user to understand or work out the details of the
memory setup and other processor initialization.

Designers should follow Rabbit system design conventions so that Dynamic C can work with their
system.

Design Conventions

* Include a standard Rabbit programming cable. The standard 10-pin programming connector
provides a connection to serial port A and allows the PC to reset and cold-boot the target sys-
tem.

e Connect astatic RAM having at least 32K to chip select #1 (/CS1, /OEL, /WEL1). Itisuseful if
the PC board footprint can also accommodate a RAM large enough to hold all the code antici-
pated. If alarge RAM can be accommodated, software development will go faster. Although
code residing in some flash memory can be debugged, debugging and program download is
faster to RAM. There are a so types of flash memory that can be used, but they cannot support
debugging.

* Connect aflash memory that is on the approved list and has at least 128K of storageto chip
select #0 (/CS0, /OEQ, /WEO). Nonapproved memories can be used, but it may be necessary to
modify the BIOS. Some systems designed to have their program reloaded by an external agent
on each powerup may not need any flash memory.

* Install acrystal or oscillator with afrequency of 32.768 kHz to drive the battery-backable clock.
(Battery-backing is optional, but the clock is used in the cold-boot sequence to generate a
known baud rate.)

* Install acrystal or oscillator for the main processor clock that isamultiple of 614.4 kHz, or bet
ter, amultiple of 1.8432 MHz. These preferred clock frequencies make possible the generation
of sensible baud rates. If the crystal frequency is amultiple of 614.4 kHz, then the same multi-
ples of the 19,200 bps baud rate are achievable. Common crystal frequenciesto use are 3.6864,
7.3728, 11.0592 or 14.7456 MHz, or double these frequencies.

The user may be concerned that the requirement for a programming connector places added cost
overhead on the design. The overhead is very small—Iless than $0.25 for components and board
space that could be eliminated if the programming connector were not made a part of the system.
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The programming connector can also be used for avariety of other purposes, including user appli-
cations. A device attached to the programming connector has complete control over the system
because it can perform a hardware reset and load new software. |If this degree of control is not
desired for a particular situation, then certain pins can be left unconnected in the connecting cable,
limiting the functionality of the connector to serial communications. Z-World will be developing
products and software that assume the presence of the programming connector.

Dynamic C and a PC are not necessary for the production programming of flash memory since the
flash memory can be copied from one controller to another by cloning. Thisis done by connecting
the system to be programmed to the same type of system that is already programmed. This con-
nection is made with a cloning cable. The cloning cable connects to both programming ports and
has a button to start the transfer of program and an LED to display the progress of the transfer.

Dynamic C programming uses the Rabbit’s seria port A for software development. However, it is
possible with some restrictions for the user’s application to also use port A.

4.1 Memory Organization

The Rabbit architecture is derived from the original Z80 microprocessor. The ariginal Z80 instruc-
tion set used 16-bit addresses to address a 64K memory space. All code and data had to fit in this
64K space. The Rabbit adopts a scheme similar to that used by the 2180 to expand the available
memory space. The 64K spaceis divided into zones and a memory mapping unit or MMU maps
each zone to ablock in alarger memory; the larger memory is 1 megabyte in the case of the Z180
or the Rabbit 2000. The zones are effectively windows to the larger memory. The view from the
window can be adjusted so that the window looks at different blocks in the larger memory.

Figure 3 on page 12 shows the memory mapping schematically.

The Rabbit has a 1-megabyte physical memory space. In special circumstances more than 1-mega-
byte of memory can be installed and accessed using auxiliary memory mapping schemes. Typical
Rabbit systems have two types of physical memory: flash memory and static RAM memory. Flash
memory follows awrite-once-in-a-while and read-frequently model. Depending on the particular
type of flash used, the flash memory will wear out after it has been written approximately 10,000
to 100,000 times.

Rabbit flash memory may be small-sector type or large-sector type. Small-sector memory typi-
cally has sectors of 128 or 256 bytes. Individual sectors may be separately erased and written. In
large-sector memory the sectors are often 16K or 64K or more. Small-sector memory provides
better support for program development and debugging, and large-sector memory isless expensive
and has faster accesstime. The best solution will usually be to lay out a design to accept several
different types of flash memory, including the flexible small-sector memories and the fast large-
sector memories. At the present time development support for programs tested in flash memory is
confined to flash memories with sectors of 256 bytes or 128 bytes. If larger sectors are used, the
code must be debugged in RAM and then loaded to flash. Large-sector flash is desirable for the
better access time and power consumption specifications that are available.

Static RAM memory may or may not be battery-backed. If it is battery-backed it retains its data
when power is off. Static RAM chips typically used for Rabbit systems are 32K, 64K. 128K,
256K, or 512K. When the memory is battery-backed, power is suppliedat 2V to 3V from a
backup battery. The shutdown circuitry must keep the chip select line high while preserving mem-
ory contents with battery power.
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A basic Rabbit system has two static memory chips: one flash memory chip and one RAM mem-
ory chip. Additional static memory chips may be added. If an application requires storing datain
flash memory, particularly alot of data, another flash memory chip for the user’s data can be
added, creating a system with three memory chips—two flash memory chips and one RAM chip.
Trying to use a single flash memory chip to store both the user’s program and live data that must
be frequently changed can create software problems. When data are written to a small-sector flash
memory, the memory becomes inoperative during the 5 ms or so that it takes to write a sector. If
the same memory chip is used to hold data and the program, then the execution of code must cease
during thiswrite time. The 5 msistimed out by a small routine executing from root RAM while
system interrupts are disabled, effectively freezing the system for 5 ms. The 5 ms lockup period
can serioudly affect real-time operation.

From the point of view of a Dynamic C programmer, there are a number of different uses of mem-
ory. Each memory use occupies a different segment in the 16-bit address space. The four segments
are shown in Figure 3 on page 12.

The segments are named the base segment, the data segment, the stack segment, and the extended
code segment.

Note: Logical addresses above OXDFFF are referred to as extended memory, and sometimes all of
the logical memory below that is referred to as“ root” memory. However, sometimes “ root seg-
ment” is used to refer to the base segment.

* Root Code—Instructionsin the base segment. Instructions may also be stored in the extended
code segment. Code in the base segment operates slightly faster and plays a special rolefor cer-
tain specia uses. The base segment is normally mapped to flash memory since the code does
not change except when the system is reprogrammed.

* Root Constants—C constants, such as quoted strings or data tables are stored in flash memory
in the base segment. This constants intermixed with root code. The constants only change when
the system is reprogrammed.

* Root Variables—Root variables are stored in the data segment which is mapped to RAM.
Variables include C variables, including structures and arrays that are not initialized to afixed
value.

* Stack Memory—Stack isimplemented in the stack segment. The stack segment is normally
4K long and is always mapped to RAM. Multiple stacks may be implemented by defining sev-
eral stacksin the 4k space or by remapping the 4K space to different locationsin physical RAM
memory, or by using both approaches.

* Extended Code—Instructions not in root that often require 20-bit addressing for access. These
are accessed via the extended code segment, which is an 8K page for executing code. Upto a
megabyte of code can be executed by moving the mapping of the 8K window using special
instructions (long call, long jump and long return) that are designed for this purpose.

* Extended Constants—Constant data not in root that requires 20-bit addressing for access.
Thisis mixed together with the extended code.

e Extended Bulk Memory—Data items stored in multimegabyte memory and accessed using
special functions using 32-bit addressing.

Code may be placed in either extended memory or root memory. Code executes dightly more effi-

ciently in root memory. In large programs the bulk of codeis stored in extended code memory.

Since root constants and root variabl es share the memory, space needed for root code, and as the
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memory needed for constants or variables increases, the amount of code that can be stored in root
must decline by moving code to extended memory. The relative size of the base and data segments
can be adjusted in 4K steps.

Extended Code 1-megabyte
Segment
quadrant 3
64K
Stack ment_—1  RAM ]
Segment— RAM M~ RAM quadrant 2
Data Segment—_
% ~ quadrant 1
Base Segment—1"" f|¢h
0k
Flash quadrant O

Typical mapping
16-bit to 20-bit address space

Figure 3. Schematic Map of 16-bit Addressing Space

The Dynamic C memory mapping above shows that the Rabbit does not have a“flat” memory
space. The advantage of the Rabbit’s memory organization is that the use of 16-bit addresses and
pointersis retained, ensuring that the code is compact and executes quickly.

4.1.1 The Base Segment

The base segment has atypical size of 24K. The larger the base segment, the smaller the data seg-
ment and vice-versa. Base segment address zero is always mapped to 20-bit address zero. Usually
the base segment is mapped to flash memory. It may be mapped to RAM for debugging, or if itis
decided to copy code to RAM to take advantage of faster access time offered by RAM. The base
segment holds a mixture of code and constants. C functions or assembly language programs that
are compiled to the base segment are interspersed with data constants. Data constants are inserted
between blocks of code. Data constants defined inside a C function are put before the end of the
code belonging to the function. Data constants defined outside of C functions are stored as
encountered in the source code.

Except in small programs, the bulk of the code is executed using the extended memory window.
But the base segment has special properties that make it better for some types of code. The types
of subroutines and functions that are best placed in the base segment are as follows:

1. Short subroutines of about 20 instructions or less that are called frequently will use signifi-
cantly less execution time if placed in the root because of the faster calling linkage for 16-bit
versus 20-bit addresses. A call and return using 16-bit addressing requires 20 clocks, compared
to 32 clocks for 20-bit addressing.

2. Interrupt routines. Interrupts use 16-bit addressing so the entry to an interrupt routine must be
in root.
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3. Functions called indirectly using pointers. Functions in xmem may be called via a pointer, but
the call will be routed through a root “bouncer” making it less efficient.

4. TheBIOS core. A certain part of the BIOS must be at the start of the base segment.

4.1.2 The Data Segment

The data segment is mapped to RAM and contains C variables. Typically it starts at 8K or above
and ends at 52K (OxCFFF). Data allocation starts at or near the top and proceedsin a downward
direction. It is aso possible to place executable code in the data segment if it is copied from flash
to the data segment. This can be desirable for code that is self modifying, code to implement
debugging aids or code that controls write to the flash memory and cannot execute from flash. In
some cases RAM may require fewer wait states so code executes faster if copied to RAM.

4.1.3 The Stack Segment

The stack segment normally is from 52K to 56K (0xD000-OxDFFF). It is mapped to RAM and
holds the system stack. If there are multiple stacks then multiple mappings with multiple stacksin
each mapping can be used. For exampleif 16 stacks of 1k length are needed then 4 stacks can be
placed in each 4k mapping and 4 different mappings for the window can be used.

4.1.4 The Extended Memory Segment

This 8K segment from 56K to 64K (OXEQ00-OxFFFF) is used to execute extended code and it is
also used by routines that manipulate data located in extended memory. While executing code the
mapping is shifted by 4K each time the code passes the 60K point. Large code can be efficiently
executed while using up only 8K of thel6-bit addressing space.

4.2 How The Compiler Compiles to Memory

The compiler generates code for root code, constants, extended code and extended constants. It
allocates space for data variables, but, except for constants, does not generate data to be stored in
memory. Any initialization of variables must be accomplished by code since the compiler is not
present when the program startsin the field.

In all but the smallest programs, most of the code is compiled to extended memory. This code exe-
cutes in the 8K window from EOOO to FFFF. This 8K window uses paged access. Instructions that
use 16-bit addressing can jump within the page and al so outside of the page to the remainder of the
64K logical space. Specid instructions, particularly | cal |, | j p,andl r et , are used to access
code outside of the 8K window. When one of these transfer-of-control instructions is executed,
both the address and the view through the 8K window change, allowing transfer to any instruction
in the 1M physical memory space. The 8-bit XPC register controls which of two consecutive 4K
pages the 8K window aligns with (there are 256 pages). The 16-bit PC controls the address of the
instruction, usually in the region EO0O to FFFF. The advantage of paged accessis that most
instructions continue to use 16-bit addressing. Only when a page change is needed does a 20-bit
transfer of control need to be made.

Asthe compiler compiles code in the extended code window, it checks at opportune timesto see if
the code has passed the midpoint of the window or FO00. When the code passes FO00, the com-
piler dides the window down by 4K so that the code at FOO0+x becomes resident at EOO0+x. This
automatic paging results in the code being divided into segmentsthat are typically 4K long, but
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which can be very short or aslong as 8K. Transfer of control within each segment can be accom-
plished by 16-bit addressing. Between segments, 20-bit addressing is required.
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5. The Rabbit BIOS

The Dynamic C programming system for the Rabbit uses a BIOS (basic input output system). The
BIOS is a separate program file that contains the code needed to interface with Dynamic C. It also
normally contains a software interface to the user’s particular hardware. Certain driversin the
Dynamic C libraries require BIOS routines to perform tasks that are hardware-dependent. When
the user compiles a program to atarget board using Dynamic C, the BIOS is compiled first asan
integral part of the user’s program.

A single general-purpose BIOS is supplied with Dynamic C for the Rabbit. This BIOS will allow
you to boot Dynamic C on any Rabbit-based system that follows the basic design rules needed to
support Dynamic C. The BIOS requires either both a flash memory and a 32K or larger RAM, or
just a128K RAM, for it to be possible to compile and run Dynamic C programs. If the user uses a
flash memory from thelist of flash memoriesthat are already supported by the BIOS, the task will
be simplified. If the flash memory chip is not already supported, the user will have to write a
driver to perform the write operation on the flash memory. Thisis not difficult provided that a sys-
tem with 128K of RAM and the flash memory to be used is available for testing.

5.1 Startup Conditions Set Up By the BIOS
The BIOS sets up initial values for the following registers by means of code and declarations.

* Thefour memory bank control registers —VBOCR, MB1CR, MB2CR, and MB3CR—are 8-bit
registers, each associated with one quadrant of the 1M memory space. Each register determines
which memory chip will be mapped into its quadrant, how many wait states will be used for
accessing that memory chip, and whether the memory chip will be write protected.

* The STACKSEGregister isan 8-hit register that determines the location of the stack segment in
the 1M memory.

* The DATASEGregister is an 8-hit register that determines the location of the data segment in
the 1M memory, normally the location of the data variable space.

* The SEGSI ZE register is an 8-hit register holding two 4-bit registers. Together the registers
determine the relative size of the base segment, data segment and stack segment in the 64K root
space.

* The MM DRregister isan 8-bit register used to force /CSL to be always enabled or not. Having
CS1 aways enabled reduces power consumption.

* The XPCregister is used to address extended memory. Normally the user’s code frequently
changes thisregister. The BIOS setstheinitial value.

* The SP register isthe system stack pointer. It is frequently changed by the user’s code. The
BIOS sets up an initial value.

All together there are 11 MMU, M Uregistersthat are set up by the BIOS. These registers determine

all aspects of the hardware setup of the memory.

In addition, a number of origin declarations are made in the BIOS to tell the Dynamic C compiler
where to place different types of code and data. The compiler maintains anumber of assembly
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counters that it usesto place or alocate root code, extended code, data constants, data variables,
and extended data variables. Each of these counters has a starting location and a block size.

5.2 BIOS Flowchart

The following flowchart summarizes the functionality of the BIOS:

Sart at Application
address0 Program
Initialize BIOS Relocate BIOS B1OS services
Flag? Yes if necessary| for user appli-

y No

Setup memory
control and
basic BIOS ser
vices.

Clear flag in
source code.

Y

I's the program-|

cation program.

Start Dynamic G
communications

ming cable con Yes and . state
nected? machine.
y No
Divert to BIOS Yes
sarvice? * *
Act as mas- Service diag-
* No ter for prot | nostic port,
] gram (not yet
Call user appli available)

cation program
(main).

Figure 4. BIOS Flowchart
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5.3 Internally Defined Macros

Some macros used in the BIOS are defined internally by Dynamic C before the BIOS is compiled.
They are defined using tests done in the bootstrap loading, or by reading variables set in the GUI.
These are:

_FLASH , _RAM_ - Used for conditional compilation of the BIOS to distinguish between
compiling to RAM and compiling to flash. These are set in the Options | Compiler menu.

_RAM SI ZE , FLASH SI ZE - Used to set the MMU registers and code and data sizes
availableto the compiler. The values given by these macros represent the number of 0x1000
blocks of memory available.

_BOARD_TYPE_ - Thisisread from the System ID block or defaulted to 0x100 (the BL1810

JackRabbit board) if no System ID block is present. This can be used for conditional compilation
based on board type.

5.4 Modifying the BIOS

The BIOS can be modified to be more specific concerning the user’s configuration. This can be
done one step at atime, making it easy to detect any problems. The source code for the Universal
BIOSisin Bl OS\ RABBI TBI CS. C. Dynamic C uses this source code for the BIOS by default,
but the user can specify another BIOS for Dynamic C to use in the Options | Compiler menu.

There are several macros at the top of RABBI TBI OS. Cthat users may want to modify for boards
they design or for special situations involving off-the-shelf Rabbit-based boards.

USE115KBAUD

The default value of 1 specifiesthat Dynamic C will communicate at 115,200 baud with the target.
If thismacro is set to zero, Dynamic C will communicate at 57,600 baud. The lower baud rate
might be needed on some PCs that can not handle 115,200 baud. If thisis changed to zero, the
baud rate in Dynamic C Options|Communications should be changed to 57,600 also.

CLOCK_DOUBLED
The default value of 1 causes the clock speed to be doubled if the crystal speed isless than or
equal to 12.9 MHz. Setting this to zero means the clock speed will not be doubled.

ENABLECLONI NG
The default value of 0 disables cloning. Setting thisto 1 enables cloning and slightly increases the
code size of the BIOS. If cloning is used, PB1 should be pulled up with 50K or so pull up resistor.

CLONI NGBAUDRATE

The default value of 1 makes cloning happen at 115,200 baud, zero makes the cloning baud rate
57,600.

CLONEVWHOLEFLASH
If thisis set to 1, the entire primary flash except for the system ID block will be copied when clon-
ing.
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DATAORG

Beginning logical address for the data segment. The default is 0x6000. This should only be
changed to multiples of 0x1000. Increasing it increases the root code space available, and
decreases root data space, decreasing it has the opposite effect. It can changed to as low as 0x3000
or as high as 0xB00O.

RAM S| ZE

This macro sets the amount of RAM available. The default valueisthe internally defined
_RAM SI ZE_ The units are the number of 4k pages of RAM. In specia situations, such as split-
ting RAM between two coresident programs, this may be modified to a smaller value than the
actual available RAM.

FLASH SI ZE

This macro sets the amount of flash available. The default value isthe internally defined
_FLASH_SI ZE_ The units are the number of 4k pages of flash. In special situations, such as
splitting flash between two coresident programs, this may be modified to a smaller value than the
actual available flash.

CS1_ALVAYS_ON
Keeping CS1 active is useful if your system is pushing the limits of RAM accesstime. It will
increase power consumption alittle. Set to 0 to disable, 1 to enable

WATCHCODESI ZE, WATCHDATASI ZE

These define the number of bytes available to the debugger for compiling watch expression. The
default values are 0x200/0x060. Decreasing these increases the amount of RAM available for root
data.

NUM RAM WAI TST, NUM FLASH WAI TST
These define the number of wait states to be used for RAM and flash. The default value for both is
0. Theonly valid valuesare 4, 2, 1 and 0.

MBOCR | NVRT_A18, MB1CR | NVRT_A18, MB2CR_| NVRT_A18, MB3CR_| NVRT_A18
MBOCR | NVRT_A19, MB1CR | NVRT_A19, MB2CR_|I NVRT_A19, MB3CR_|I NVRT_A19
These determine whether the M U registers for each quadrant are set up to invert addresslines A18
and A19 after the logical to physical address conversion. This allows each 256K quadrant of phys-
ical memory access up to four 256k pages on the actual memory device. These would be used for
special compilations of programsto be coresident on flashes between 512k and 1M in size. See
application note 202, Rabbit Memory Management In a Nutshell, and application note 210, Run-
ning Two Application on a TCP/IP Development Board for more details.
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5.5 Origin Statements to the Compiler

The Dynamic C compiler uses the information provided by origin statements to decide where to
place code and data in both logical and physical memory. The origin statements are normally
defined in the BIOS; however, they may also be useful in an application program for certain tasks
such as compiling a pilot BIOS or cold loader, or specia situations where a user wants two appli-
cation coresident within a single 256K quadrant of flash.

5.5.1 Origin Statement Syntax
Prior to Dynamic C 7.05, origin statement syntax is:

#<origin type> <origin nane> <segment val ue> <l ogi cal address>
<si ze> apply

All arguments are required.

Starting with Dynamic C 7.05, origin statement syntax (in BNF) is:

origin-directive : #origin-type identifier origin-designator

origin-designator : action-expression | origin-declaration

origin-declaration : physical-address size [follow-expression] [action-expression] [ debug-expres-
sion]

origin-type: r codor g | xcodor g |wcodor g |rvar org

follow-expression : f ol | ows identifier

action-expression : r esurme |appl y

debug-expression : debug |nodebug |al |

size : constant-expression

physical-address : constant-expression constant-expression

The non-terminals, identifier and constant-expressions, are defined in the ANSI C specification.

5.5.2 Origin Statement Semantics
An origin statement associates a code pointer and a memory region with a particular type of code.
The type of codeis specified by #origin-type.

Table 2. Origin types recognized by the compiler

origin type keyword
root code rcodorg
xnmem code xcodor g

wat ch code wcodor g

root data rvarorg

All code sections (r codor g, xcodor g code and wcodor g) grow up. All non-constant data
sections (r var or g) grow down. Root constants are generated to ther codor g region. xdat a
and xst r i ng are generated to the current xcodor g region.
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All origin statements must have aunique ANSI C identifier. The scope of thisidentifier is only with
other origin statements or declarations. In the pre 7.05 syntax thisisthe<or i gi n nane>.

Each memory region is defined by calculating a physical address from an 8-bit base address (first
constant-expression of physical-address) and a 16-bit logical address (second constant-expression of
physical-address). The size of the memory region is determined by 20-bit size. Overflow of these
three values is truncated. In the pre 7.05 syntax these three values are <segnment val ue>,
<l ogi cal address>and<si ze>.

The keywords appl y andr esune are action-expressions. They tell the compiler to generate code
or data in the memory region specified by identifier. An appl y action resets the code or data
pointer for the specified region to the starting physical address of the region and makes the region
active. A r esurme action does not reset the code or data pointer, but does make the memory region
active.

A region remains active (i.e., the compiler will continue to generate code or data to it) until
another region of the same origin-type is activated with an appl y or r esune action or until the
memory region isfull.

The option follow-expression is best described with an example. First, let us declare your code
in an origin statement containing an origin-declaration. A follow-expression can only name a
region that has already been declared in an origin-declaration.

#rcodorg yourcode 0x0 0x5000 0x500
then the origin statement:
#rcodorg mycode 0x0 0x5500 0x500 foll ows yourcode

tells the compiler to activate mycode when your code isfull. Thisaction does an implicit

r esume on the memory region identified by your code. In this example, the implicit r esune
also generates ajump to ny code when your code isfull. For dataregions, the data that would
overflow the region is moved to the region that follows. Combined data and code regions (like
#r codor g) use both methods, which one is used depends on whether code or data caused the
region to overflow. In our example, if data caused your code to overflow, the data would be
writtten to the memory region identified by mycode.

The optional debug-expression isonly valid with thexcodor g origin-type. It tells the compiler to
generate only debug or nodebug code in that physical memory region. If debug-expression is
not specified, the declaration istreated asan al | region. Anal | region can have both debug
and nodebug code. Activatingan al | region (by using appl y or r esune) will cause both
debug and nodebug regionsto becomeinactive. If anal | regionisactive, both debug and
nodebug regions must be made active to entirely deactivatetheal | region. In other words, if an
al | regionisactiveand adebug region is activated, any nodebug code will still be generated
totheal | region until anodebug region is made active.

With regard to follow-expressions, adebug region may not follow anodebug region or vice
versa. Anal | region may follow either adebug or anodebug region. Only anal | region may
follow another al | region. Thisalowsdebug and nodebug regionsto spill into acommon

al | region.
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5.5.3 Origin Statement Examples
The diagram below shows how the origin statements define the mapping between the logical and
physical address spaces.

#defi ne DATASEGVAL 0x91

#rvarorg rootdata (DATASEGVAL) Oxc5ff 0Ox6600 apply // grows down
#rcodorg rootcode 0x00 0x0000 0x6000 apply

#wcodor g wat code ( DATASEGVAL) 0xc600 0x0400 apply

#xcodorg xmencode Oxf8 0xe000 0x1a000 apply

/] data declarations start here

Dynamic C defines macros that include information about compiling to RAM or flash and identify-
ing memory device types, memory sizes, and board type. The origin setup shown above differs from
that included in the standard BIOS included with Dynamic C as the standard BIOS uses additional
macros values for dealing with awider range of boards and memory device types.

Physical Address Space

_ Ox FFFFF
Logical Address Space
OxXFFFF
xmemcode
0x 9DDFF
0xE000
X stack
0xCDFE | izt S
OxC5FF watcode
rootdata 0x97000
0x20000
0x6000
rootcode
xmencode
0x0000
0x06000
r oot code
0x00000

5.5.4 Origin Directives in Program Code
To place programs in different placesin root memory or to compile aboot strapping program, such
asapilot BIOS or cold loader, origin statements may be used in the user’s program code.

For example, the first line of apilot BIOS program, pi | ot . ¢, would be

#rcodorg rootcode 0x0 O0x0O 0x6000 apply

A program with such an origin directive could only be compiled to a.bin file, because compiling it
to the target would overwrite the running BIOS.
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6. The System ID Block

The BIOS supports a system identification block to be placed at the top of flash memory. Identifi-
cation information for each device can be placed in it for access by the BIOS, flash driver, and
users. This block will contain specific part numbers for the flash and RAM devicesinstalled, the
product’s serial number, Media Access Control (MAC) addressif an Ethernet device, and so on. In
addition, the ID block is designed with future expansion in mind by including a table version num-
ber and storing the block’s size in bytes within the block itself. Pointers for a“user block” of pro-
tected data exist as well, with the planned use for storage of calibration constants, etc., although
the user may useit if desired.

Note that version 1 of the ID block (tableVersion = 0x01) has only limited functionality. In partic-
ular, only the following parameters are valid: t abl eVer si on, product | D, t i nest anp,
macAddr, i dBl ockSi ze, i dBl ockCRC, and mar ker . Version 2 and later ID blocks have all
the values filled with the exception of the flash and RAM speed fields, and Dynamic C versions
7.04x2 and later support use of the user block.

If Dynamic C does not find an ID block on a device, the compiler will assume that it isaZ-World
BL 1810 (Jackrabbit) board.
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6.1 Definition

The following global struct isdefined in | DBLOCK. LI B and isloaded from the flash device dur-
ing BIOS startup. Users can access this struct in RAM if they need information from it. The defi-
nition below isfor a 128-byte ID block; the actual size can vary according to thevaluein

i dBl ockSi ze. Ther eserved[] fieldwill expand and/or shrink to compensate for the change
insize.

typedef struct {

int tabl eVersion; /1 ver. numfor this table |ayout

int productlD; [l Z-World part #

int vendorl D /11 =2zZ-Wrld

char tinmestanp[7]; Il " YYYMDHMS

| ong flashl D, [l Z-World part #

int flashType; /] Wite nethod

int flashSize; /1 in 1000h pages

int sectorSize; /1l size of flash sector in bytes

int nunBectors; /'l number of sectors

int flashSpeed,; // 1n nanoseconds

| ong flash2l D, [l Z-Wbrld part #, 2nd flash

int flash2Type; // Wite nethod, 2nd fl ash

int flash2Size; /1 in 1000h pages, 2nd fl ash

int sector2Size; /'l byte size of 2nd flash's sectors

int nunRSectors; /'l number of sectors

int flash2Speed; // in nanoseconds, 2nd fl ash

| ong ram D, [l Z-World part #

int rantize; /1 in 1000h pages

int ranBpeed,; /1 in nanoseconds

int cpul D /1 CPU type identification

| ong crystal Freq; /1l in Hertz

char macAddr|[ 6] ; /1 Media Access Control (MAC) addr

char serial Nunber[24]; [/ device serial nunber

char product Nane[ 30] ; /!l null-termnated string

char reserved[1]; /1l reserved 4 |ater use - size can
/1 gr ow

| ong i dBl ockSi ze; /1 size of the SyslDBlock struct

int wuserBl ockSize; /1l size of user block (directly
/1 bel ow | D bl ock)

int wuserBlockLoc; /] offset of start of user block
/1 fromthis block

int idBlockCRC, /1 CRC of this block (when this
/1 field is set to zero)

char marker[6]; /1 shoul d be 0x55 OxAA 0x55 OxAA

[l 0x55 OxAA
} Sysl DBl ock;
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6.2 Access

The BIOS will read the system 1D block during startup, so all a user needsto do is access the sys-
tem ID block struct in memory. If the user desires to read the ID block off the flash, the following
function (from | DBLOCK. LI B) should be called:

_readl DBl ock
int _readl DBl ock(int flash_bitmp)

DESCRIPTION:
Attemptsto read the system ID block from the highest flash quadrant and saveitin the

system ID block structure. It performs a CRC check on the block to verify that the block
isvalid. If an error occurs, Sys| DBl ock. t abl eVer si on isset to zero.

PARAMETER

flash_bitmap Bitmap of memory quadrants mapped to flash. Examples:
0x01 = quadrant O only
0x03 = quadrants O and 1
0x0C = quadrants 2 and 3

RETURN VALUE:
0: Successful
- 1: Error reading from flash

- 2: 1D block missing
- 3:ID block invalid (failed CRC check)

TheW it eFl ash() function doesnot alow writing to the ID block. If the ID block does need
to be rewritten, contact Rabbit Semiconductor’s Technical Support.

If the BIOS does not find an ID block, it setsal parametersin Sys| DBl ock to zero.
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6.3 Reading the ID block

The following sequence of events can be used to determineif an ID block is present:

1. Thetop 16 bytes of the flash device areread (the first two quadrants are mapped to flash, so 16
bytes starting at address Ox7FFFO will be read) into alocal buffer. If the flash is smaller than
512K, it doesn’'t matter because Ox7FFFO will still represent the start of the highest 16 bytes.

2. Thetop six bytes of the buffer (read from Ox7FFF8-0x7FFFF) are checked for an alternating

sequence of 0x55, O0XAA, 0x55, OXAA, 0x55, OxAA. If thisis not found, the block does not
exist and an error (-2) is returned.

3. ThelD block size (=SIZE) is determined from the first 4 bytes of the 16-byte buffer.

4. A block of bytes containing al fields from the start of the Sys| DBl ock struct up to but not
including the reserved field is read from flash at address 0x80000-SIZE, essentialy filling the
Sys| DBI ock struct except for the reserved field (since the top 16 bytes have been read ear-
lier).

5. The CRC field is saved in alocal variable, then set to 0x0000. A CRC check is then calcul ated
for the entire ID block except the reserved field and compared to the saved value. If they do not
match, the block is considered invalid and an error (-3) isreturned. The CRC field isthen
restored.

Thereserved field is avoided in the CRC check since its size may vary, depending on the size of the
ID block.

Table 3. The System ID Block

sg:tsg;[‘ E&Tk Size (bytes) Description
00h 2 ID block version number
02h 2 Product 1D
04h 2 Vendor 1D
06h 7 Timestamp (Y'Y/MM/D/H/M/S)
0Dh 4 Flash ID
11h 2 Flash size (in 1000h pages)
13h 2 Flash sector size
15h 2 Number of sectorsin flash
17h 2 Flash access time (nanoseconds)
19h 4 Flash ID, 2nd flash
1Dh 2 Flash size (in 1000h pages), 2nd flash
1Fh 2 Flash sector size, 2nd flash
21h 2 Number of sectorsin 2nd flash
23h 2 Flash access time (nanoseconds), 2nd flash
25h 4 RAM ID

26 Rabbit 2000 Microprocessor



Table 3. The System ID Block (Continued)

sg:tsgf‘ E&Tk Size (bytes) Description

29h 2 RAM size (in 1000h pages)

2Bh 2 RAM access time (nanoseconds)

2Dh 2 CPU ID

2Fh 4 Crystal frequency (Hertz)

33h 6 Media Access Control (MAC) address

39h 24 Serial number (as a null-terminated string)

51h 30 Product name (as a null-terminated string)

6Fh N Reserved (variable size)
SI ZE - 10h 4 Size of thisID block
SI ZE - 0Ch 2 Size of user block
SI ZE - 0OAh 2 Offset of user block location from start of this block
SI ZE - 08h 2 CRC value of this block (when this field = 0000h)
SI ZE - 06h 6 Marker, should = 55h AAh 55h AAh 55h AAh
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/. BIOS Support for Program
Cloning

A program can be loaded into a controller by compiling it using Dynamic C. However, thisis awk-
ward and slow in some situations. If cloning is enabled in the BIOS, a Rabbit-based system can
copy itself to another controller. Thisis done by connecting the programming ports of the two con-
trollers together via the Cloning Board. See below.

J1 J2
RXAp——\ ——RXA
GND GND
CLKA —CLKA —_—
« +5 Vj— +5V
Connect /RESET|——0 /JRESET Connect
to Master TxA e e \ TXA to Clone
Programming N/CH— | —ne Programming
Port STATUS oD STATUS Port
SMODEO|— CLEE S SMODEO
SMODE1|— I—’\/\/\/—I:-SMODH
470Q

Figure 5. Cloning Board

If the cloning board is connected to the master the signal CLKA isheld low. Thisis detected in the
BIOS after the reset ends, and the cloning support of the BIOS is then invoked. The BIOS cold-
boots the target system by resetting it and downloading a primary boot program. The master then
sends the entire BIOS over to the clone, where the boot program receivesit and storesit in RAM
(just like Dynamic C does when compiling the BIOS). A CRC check of the BIOS is performed on
both the master and clone, and the results are compared. The clone is reset again, and the BIOS
begins running. Finally, the master sends the user’s program at high speed, and the programis
written to the flash memory. This datatransfer can take place at 57,600 bps or 115,200 bps. When
the entire flash contents (except for the system ID block) have been transferred, the target flashes
the cable LED in adistinctive pattern to indicate that the programming is done. At that point the
cloning board can be unplugged and plugged into another target. When the master is reset, it will
program the next target.

Some Ethernet-enabled boards do not have the EEPROM with the MAC address, namely
the RCM 2100, the RCM 2200 and the BL2000. These boards can still be used as a clone
because the MAC addressisin the system ID block and this structure is shipped on the
board and is not overwritten by cloning.
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If, however, you have a custom-designed board that does not have the EEPROM or the
system ID block, you may call Z-World Technical Support for assistance in writing the
system ID block to your board.

Didl direct at: 1-530-757-373 or e-mail at support@zworld.com.
Enable Cloning Support in the BIOS

The BIOS did not support cloning until version 6.50. To enable cloning, two options must be
set at the top of the BIOS. First, ENABLECLONI NG should be set to 1. If thisis set, the BIOS will
take up additional memory because of the functions required for cloning. The cloning baud rate is
set by setting CLONI NGBAUDRATE to 0 for 57,600 bps or 1 for 115,200 bps.

By default, cloning will only copy the portion of the flash that contains the user’s program. To
copy the entire flash device (if you have data stored elsewhere in the flash, for example) set the
CLONEVHOLEFLASH option at the top of the BIOSto 1.

Ready to Clone

Once cloning is enabled, compile your program to flash, then detach the programming cable and
attach the cloning board. Make sure the “master” end of the cloning board is connected to the mas-
ter controller (the cloning board is not reversible) and that pin 1 lines up correctly on both ends.
Oncethisis done, reset the master by hitting Reset on the cloning board, and the cloning process
will begin. While the cloning is occurring, the LED on the cloning board will blink several times
per second; if the LED stops blinking then an error has occurred. Once the cloning is complete, the
LED will blink in adistinctive pattern of four flashes, than a pause before four more flashes.

Different Flash Sizes

Cloning works between Master and clone controllers that have different size flash chips. However
the Master does not know what sector size the target's flash uses. Since the Master copiesits own
universal flash driver to the clone, the Master BIOS must allocate a memory buffer sufficiently
large to work on the clone.

Root Memory Usage

The current implementation of cloning uses root memory for this buffer, which reduces the root
memory available for the application program. The size of the buffer is given by the macro
MAX_FLASH_SECTORSI ZE. Thismacrois#def i ned near thetop of theLl B\ Bl O

SLI B\ FLASHWR. LI Bfile. The default value is 1024 (4096 in older versions). The user can
reduce this buffer size to the maximum of the master and clone's sector sizes if root data spaceisa
problem, or increase it to 4096 if needed. Future implementations will use xmem for the buffer, so
root data space will not be a problem.
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8. Low-Power Design and Support

To get the most computation for a given power level, the operating voltage should be approxi-
mately 3.3V. At agiven operating voltage, the clock speed should be reduced as much as possible
to obtain the minimum power consumption that is acceptable.

Some applications, such as a control loop, may require a continuous amount of computational
power. Other applications, such as slow datalogging or a portabl e test instrument, may spend
long periods with low computational requirements interspersed with short periods of high compu-
tational load.

The current (and thus power) consumption of a microprocessor-based system generally consists of
apart that is independent of frequency and a part that depends on frequency. The part that is inde-
pendent of frequency consists of leakage or current or current drawn by special circuits such as
pullup resistors or circuits that continuously draw power. Ordinary CMOS logic uses power when
it is switching from one state to another, and thisis the power that is dependent on frequency. The
power drawn while switching is used to charge capacitance or is used when both N and P FETs are
simultaneously on for a brief period during atransition.

Floating inputs or inputs that are not solidly either high or low can also draw current because both
N and P FETs are turned on at the same time. To avoid excessive power consumption, floating
inputs should not be included in a design (except that some inputs may float briefly during power-
on sequencing). Most unused inputs on the Rabbit can be made into outputs by proper software
initialization to remove the floating property. Pullup resistors will be needed on afew inputs that
cannot be programmed as outputs. An alternative to a pullup resistor is to tie an unused output to
the unused inputs. If pullup (or pulldown) resistors are required, they should be made as large as
possibleif the circuit in question has a substantial part of its duty cycle with current flowing
through the resistor.

forfl
L\ ext pin

disable fl2 | g CLK
I |

i — . Clock
— Main Osc Doubler /8 CPU
= 32kHz Osc Peripheral
_ Devices

To watchdog timer and

time/date clock Note: Peripherals cannot be clocked

slower than CPU.

Figure 6. Rabbit Clock Distribution
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For extreme low-power operation it should be taken into account that some memory chips draw
substantial current at zero frequency. For example, a Samsung static RAM (part number
KM®684000BPL-7L) wasfound to draw 1 mA at 5V when chip select and output enable were held
enabled and all the other signals were held at fixed levels (along read). When the microprocessor
is operating at the slowest frequency (32 kHz clock), the memory cycle is about 64 ps and the
memory chip spends most of its time with the chip enable and output enable on. The current draw
during along read cycleis not specified in most memory data sheets. The Samsung chip, accord-
ing the data sheet, typically draws about 4 mA per megahertz when it is operating. However, it
appears that current consumption curve flattens out at about 250 kHz because of the constant 1
mA draw during along read.

In order to take full advantage of the Rabbit’s ultra slow sleepy execution modes, a memory that
does not consume power during a static read is required. Advanced Micro Devices has aline of 3
V flash memories (AM29LV 010, AM29LV 040) that power down automatically whenever the
address (and control) lines do not change for a period of time slightly longer than the access time.
These memories will consume on the order of 30 WA when operated at a datarate of 1/64 MHz.

Currently, Dynamic C does not allow debugging in with flash chips having sector sizes greater
than 4096 bytes, nor do the flash drivers provided in the Dynamic C libraries support such flash
chips. To use alarge sector flash in your product design, you can debug your application in RAM
by using the Compile to RAM compiler option, or use a board with small sector flash for develop-
ment only.

The Rabbit low-power sleepy mode of operation is achieved by switching the main clock to the
32.768 kHz clock and then disabling the main oscillator. In this mode, the Rabbit executes about 3
instructions every millisecond. Adding memory wait states can further slow the processor to about
500 instructions per second or one every 2 ms. At these speeds the power consumed by the micro-
processor, exclusive of the 32.768 kHz oscillator, is very low, in the area of 50 HA to 100 pA. The
Rabbit will generally test for some externa event and leave sleepy mode when that event is
detected. The 32.768 kHz oscillator is a major consumer of power, requiring approximately 80 HA
at 3.3 V. Thisdropsdramatically to about 18 pA at 2.2 V. For the lowest standby power it may be
desirable to use an external oscillator to generate the 32.768 kHz clock. The Intersil (formerly
Harris) part HA7210 can be used to construct a 32.768 kHz oscillator that consumes approxi-
mately 5 pA at 3.3 V.

For the very lowest power consumption the processor can execute along string of mul instruc-
tions with the de and bc registers set to zero. Few if any internal registers change during the exe-
cution of astring of mul zero by zero, and a memory cycle takes place only once in every 12
clocks. By combining all these techniques it may be possible to get the sleepy current under 50
HA.
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8.1 Software Support for Low-Power Sleepy Modes

In dleepy mode the microprocessor executes instructions too slowly to support most interrupts.
The seria ports can function but cannot generate standard baud rates since the system clock is at
32.768 kHz. The 48-bit battery backable clock continues to operate without interruption.

Usually the programmer will want to reduce power consumption to a minimum, either for afixed
time period or until some external event takes place. On entering sleepy mode by calling use
32kHzGsc() , the periodic interrupt is completely disabled, the system clock is switched to
32.768 kHz, and the main oscillator is powered down. On exiting sleepy mode by calling use

Mai nGsc() , the main oscillator is powered up, atime delay isinserted to be sure that it has
resumed regular oscillation, and then the system clock is switched back to the main oscillator. At
this point the periodic interrupt is reenabled. Data will probably be lost if interrupt-driven commu-
nication is attempted while in sleepy mode.

While in dleepy mode the user has available aroutine, updat eTi ner s() , that can be called
periodically to keep Dynamic C time variables updated. These time variables keep track of sec-
onds and milliseconds and are normally used by Dynamic C routines to measure time intervals or
to wait for a certain time or date. This routine reads the real-time clock and then computes new
values for the Dynamic C time variables. The norma method of updating these variablesisthe
periodic interrupt that takes place 2048 times per second.

8.2 Baud Rates in Sleepy Mode

The available baud rates in deepy mode are 1024, 1024/2, 1024/3, 1024/4, etc. (The baud rate
113.77 is available as 1024/9 and may be useful for communicating with other systems operating
at 110 bps - a 3.4% mismatch. In addition the standard PC compatible UART 16450 with a baud
rate divider of 113 generates a baud rate of 1019 bps, a 0.5% mismatch with 1024 bps. Baud rate
mismatches of up to 5% may be tolerated.) If there is alarge baud rate mismatch, the serial port
can usually detect that a character has been sent to it, but not read the exact character.

Designer’s Handbook 33



34

Rabbit 2000 Microprocessor



9. Memory Planning

The following regquirements should be considered when planning memory configuration for a Rab-
bit system.

* Thesize of the code anticipated. Usually code size up to 512K is handled by one flash
memory chip. Static data tables can be conveniently placed in the same space using the
xdat a and xst r i ng declarations supported by Dynamic C, so the amount of space
needed for static data can be added to the amount of space needed for code. If you are
writing a program from scratch, remember that 512K of codeis equivalent to 25,000 to
50,000 C statements, and such a large program can take years to write.

» Cprogramsvary in how much RAM will be required. Many programs can subsist on
32K of RAM. Having more RAM on the system is convenient for debugging since
debugging and program testing generally operates more powerfully and faster when
sufficient RAM is available to hold the program and data. For this reason, most Z-
World controllers based on the Rabbit use adual footprint for RAM that can accommo-
date either a32K x 8, which isin a28-pin package, or a128K x 8 or 512K x 8, whichis
in a32-pin package. The base RAM isinterfaced to/CS1 and /WEL, and /OELl. RAM is
required for the following items.

Root variables—maximum of 48K.
Stack pages—rarely more than 20K.

RAM for debugging convenience on prototype units—512K is usually enough to
accommodate programs.

RAM for extended memory, such as data logging applications or communications
applications—amount needed depends on application.

9.1 Making a RAM-only board.

Some Rabbit customers are designing boards that have only asingle RAM chip and no flash mem-
ory. Although thisis not generally recommended, it may be safe to use only a RAM chip as long
as the board has a continuous power supply and is set up to be field-programmable via the Rabbit
bootstrap mode.

For example, a Rabbit board in a noncritical system such as alawn sprinkler system may be moni-
tored from aremote location via the Internet or Ethernet, where the remote monitor has the ability
to reload the application program to the board. One way to achieve field programmability iswith
the RabbitLink Network Gateway.

There are certain hardware and software changes that are required to make this work which are
discussed here. Dynamic C starting with version 6.57 has the software files discussed here which
are necessary to make a RAM only board work.
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9.1.1 Hardware Changes

Ordinarily, CSO/OEO/WEDO of the Rabbit processor are connected to a flash chip, and
CSI/OEV/WEZ1 are connected to RAM. However, if only RAM isto be used, CSO/OEQ0/WEO must
be connected the RAM. Thisis because on power up or reset, the Rabbit will begin fetching
instructions from whatever is hooked up to CS0/OEO/WEDO.

9.1.2 Software Changes

In order to program aRAM only board from Dynamic C or the Rabbit Field Utility (RFU), severd
changes are needed. When Dynamic C or the RFU first start, they put the Rabbit based target
board in bootstrap mode where it awaits data sent via “triplets.” These programs then send triplets
that map the lowest quadrant of physical memory to CSI/OEL/WEL in order to load a primary
loader to RAM. Thefirst set of tripletsloaded to the target is contained in afile called cold-
load.bin. A different coldload.bin isrequired in order to map the lowest memory quadrant to
CSO/OEO/WEQ. Theimagefile for this programis\ Bl OS\ RAMONLYCOLDLOAD. BI N. To useit,
rename Bl OS\ COLDLOAD. BI Nto Bl OS\ COLDLOAD. BAK, and rename\ Bl OS\ RAMONL Y-
COLDLQAD. BI Nto\ Bl OS\ COLDLQAD. BI N. (Later versions of Dynamic C may have a GUI
method of choosing the cold loader.)

The primary loader loads a secondary |oader, which doesn’t affect the memory mapping. The sec-
ondary loader |oads the Rabbit BIOS to RAM (from the application program image file in the case
of the RFU, by compiling the BIOS straight to the target in the case of Dynamic C.) One of the
first things the BIOS does in program mode is copy itself to flash, and then transfer execution to
the flash copy. When the board powers up later without the programming cable attached, it will
gtart running the BIOS in flash.

The specia BIOSfile\ Bl OS\ RAMONLYBI OS. C eliminates the self copy step and initializes the
MIU/MMU correctly to match the hardware configuration. This BIOS can be selected as the user-
defined BIOS by using the Options | Compiler menu item.
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10. Flash Memories

The flash memories listed in Table 3 below have been qualified for use with the Rabbit 2000
Mi Croprocessor.

Table 4. 32-Pin Flash Memories Supported by the Rabbit 2000

. Device | Sector | Number L) Operating
Vendor bevice | “size | size | of nVrl(;e A;fnfzs Voltage | 3ckage gi//n amic
Name (bytes) | (bytes) | Sectors ode ) W) Types ersion
Atmel AT29C1024 64K (128 512 | sector |70 4555 (56 7':;?;‘2(1
Atmel AT29LV1024 64K | 128 512 | sector | 150 3.0-36 |56 7.|C:eratr)1d
Atmel AT29C010 128K | 128 1024 | sector |70 4555 |1,2,4 All
Atmel AT29LV010 128K (128 1024 | sector |150 3.0-36 (24 All
Atmel AT29BV010 128K (128 1024 | sector |200 2736 |2,4 7.|C;feratr)1d
Atmel AT29C020 256K | 256 1024 | sector |70 4555 |1,2,4 6.|5aOI:rnd
Atmel AT29LV020 256K | 256 1024 | sector |200 3.0-36 (24 6.|5aOI:rnd
7.02 and
Atmel AT29BV020 256K | 256 1024 | sector | 250 27-36 (2,4 Iatera*r’]
Atmel AT29C040 512K | 256 2048 | sector |120 4555 |1, 4 6.|5aOI:rnd
Atmel AT29LV040 512K | 256 2048 | sector | 200 3.0-36 |4 6'|5§tgnd
... | V29C51001T 6.50 and
Mosdl/Vitelic \V29C51001B 128K [512 256 byte |45 4555 |1,2,4 later
o 7.02 and
Mosdl/Vitelic | V29LC51001 | 128K | 512 256 byte |90 4555 |1,2 later®
... |vV29C51002T 6.50 and
Mosdl/Vitelic \/29C510028 256K | 512 512 byte |55 4555 |1,2,4 later
o 7.02 and
Mosel/Vitelic | V29LC51002 | 256K | 512 512 byte |90 4555 |1,2 |ater®
... | V29C51004T 6.50 and
Mosdl/Vitelic \/29C51004B 512K |1024 512 byte |70 4555 (2,4 later
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Table 4. 32-Pin Flash Memories Supported by the Rabbit 2000

i Device | Sector | Number Best | operating
Vendor Device Size | Size o yrge A_clficrszs Voltage Packagae CI:D)\//narr_uc
— (bytes) | (bytes) | Sectors oleke (ns) ) Types ersion
. .| V29C31004T 7.02 and
Mosel/Vitdic || > o | 512K |1024 | 512 | byte |90 30-36 |2,4 o
ssT SST20EE512 | 64K |128 512 | sector | 70 4555 (1,234 6';) e??d
SST SST29LE512 | 64K |128 512 | sector | 150 3036 (1,234 G'EE e":‘cnd
SST SST29EE010 | 128K | 128 1024 | sector |90 4555 (1,2, 3,4 All
SST SST29LEO010 | 128K [128 1024 | sector |150 30-36 [1,23,4 All
7.02 and
SST SST29EE020 | 128K |128 2048 | sector |120 4555 |1,23,4 laterd
SST SST29LE020 | 128K |128 2048 | sector | 200 3.0-36 (1,234 7'|(§aTd
7.02 and
SST SST39SF010 | 128K | 4096 32 byte |70 4555 |1,2,3 |atera£l
SST SST39SF020 | 256K | 4096 64 | byte |45 4555 |1,2,3 | o0
7.02 and
SST SST39SF040 | 512K | 4096 128 byte |45 4555 |1,2,3 |atera£l
Winbond W29CEEO11 | 128K | 128 1024 | sector |90 4555 |1,2,4 7'|(§aTd
Winbond W29C020CT | 256K |128 2048 | sector |70 4555 |1,2,4 All®
Winbond W29C040 512K | 256 2048 | sector |90 4555 (2,4 7'|(;fera:d

a. Package Types:

32-pin PDIP

32-pin PLCC

32-pin TSOP (8 mm x 14 mm)
32-pin TSOP (8 mm x 20 mm)
44-pin PLCC

48-pin TSOP (8 mm x 14 mm)

b. These flash devices are supported as of Dynamic C 7.02, but have not been tested.

c. Dynamic C Versions 6.04-6.1x:
The FLASH_SI ZE parameter in the JRABBI OS. Cfile needs to be changed to reflect the correct
number of 4K pages for the selected device. By default, the FLASH_SI ZE parameter contains a 0x20
that corresponds to a 128K x 8 device with thirty-two 4K pages of flash.Dynamic C versions 6.5x and
greater determine the flash size automatically and no code change is required.

ok wdE
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10.1 Supporting Other Flash Devices

If auser wishesto use aflash memory not listed in Table 3 but still uses the same standard write
sequences as one of the supported flash devices, the existing Dynamic C flash libraries may be
able to support it simply by modifying a few valuesin the BIOS. Specifically, three modifications
need to be made:

1. Theflash device needs to be added to the list of known flash types. This table can be found by
searching for the label FI ashDat a in thefile
LI B\ Bl OSLI B\ FLASHWR. LI B. The format is described in the file and consists of the flash
ID code, the sector size in bytes, the total number of sectors, and whether the flash iswritten
one byte at atime or one entire sector at atime.

2. Near thetop of the main BIOSfile (Bl OS\ RABBI TBI CS. Cfor most users), in theline
#define FLASH SI ZE FLASH S| ZE change FLASH Sl ZE to afixed value for
your flash (the total size of the flash in 4096-byte pages).

3. If aversion of Dynamic C prior to 7.02 is being used, the macro _ SECTOR_SI ZE _near the
top of LI B\ Bl OSLI B\ FLASHWR. LI B needsto be hard-coded in a manner similar to step 2
above. Intheline
#defi ne MAX_FLASH SECTORSI ZE _SECTOR SI ZE_

_SECTOR_SI ZE_ should be replaced with the sector size of your flash in bytes.

Note that the BIOS only supports flashes with equally-sized sectors of either 64, 128, 256, 512,
1024, or 4096 bytes. If your flash device does not fall into that category, it may be possible to sup-
port it by rewriting the BIOS flash functions; see the next section for more information.

10.2 Writing Your Own Flash Driver

If auser wishestoinstall aflash memory not listed in Table 3 that cannot be supported by follow-
ing the steps in the above section (for example, if it uses acompletely different unlock/write
seguence), custom functions need to be written for the new flash. This section explains the
requirements of these two user-written functions.

_InitFl ashDri ver

Called from the BIOS, this function initializes all the necessary values for the flash
driver. The memory quadrants that are mapped to flash memory are passed to it as a bit-
map, i.e., 0x01 = the first quadrant, 0x02 = the second quadrant, 0xOC = the topmost
two quadrants, and so on.

_WiteFl ash

The low-level sector writing function -- the user will normally call thew i t eFl ash
function. This function writes one sector of datafrom RAM to flash memory, aligned
along aflash sector boundary.
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Below isthe C st r uct used by the Z-World flash driver to hold the required information about
the flash memory installed. The _I nit Fl ashDri ver functionis called early in the BIOSto
fill thisst r uct before any accessesto the flash.

struct {
char fl ashXPC, /1 XPC required to access flash via XVEM
i nt sectorSize; /'l byte size of one flash nenory sector
i nt nunmBect ors; /'l nunber of sectors on flash
char writeMde; /1l wite method used by the flash

void *eraseChipPtr; // pointer to erase chip function in RAM
/1 eraseChi pPtr is currently unused
void *witePtr; Il ptr to wite flash sector function (RAM
} _Flashl nfo;

Thefield f | ashXPC contains the X PC required to accessthefirst flash physical memory location
viaXMEM address EO0Oh. The pointer wr i t ePt r should point to afunction in RAM to avoid
accessing the flash memory while working with it. You will probably be required to copy the func-
tion from flash to a RAM buffer in the flash initialization sequence.

Thefieldwr i t eMbde specifies the method that a particular flash device uses to write data. Cur-
rently, only two common modes are defined: “sector-writing” mode, as used by the SST SST29
and Atmel AT29 series (w i t eMbde=1); and “byte-writing” mode, as used by the Mosel/Vitelic
V29 series (wr i t eMbde=2). All other values of wr i t eMode are currently undefined, although
they may be defined by Z-World as new flash devices are used.

The required actions of these functions are listed below:
_InitFl ashDriver

Thisfunctionis called from the BIOS. A bitmap of quadrants mapped to flash (0x01, 0x02, 0x04,
0x08 correspond to the 1st-4th quadrants) is passed to it in HL. This function needs to perform the
following actions:

1. Load _Fl ashl nf o. f| ashXPCwith the proper XPC value to access flash memory address
00000h viaXMEM address EO00h. The quadrant number for the start of flash memory is
passed to the function in HL and can be used to determine the XPC value, if desired. For exam-
ple, if your flash islocated in memory quadrant 2 then the physical address of the first flash
memory location is80000h. 80000h - EO00h = 72000h, so the value placed into
_Fl ashl nf o. XPC should be 72h.

2. Load Fl ashl nf 0. sect or Si ze with the flash sector size in bytes.
3. Load Fl ashl nf o. nunBect or s with the number of sectors on the flash.

4. Flashl nfo.witePtr should beloaded with the memory location in RAM of the func-
tion that will perform that action. The function will need to be copied from flashto RAM at this
time aswell.

5. Thisfunction should return zero if successful, or -1 if an error occurs.
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_WiteFl ash

This function writes exactly one sector of datafrom abuffer in RAM to the flash memory. It is
caled from the BIOS as well as several libraries, and should be written to conform to the foll ow-
ing requirements:

For versions of Dynamic C prior to 7.02, it should assume that the source datais
located at the logical RAM address passed in BC. In al later versions of Dynamic C, a
fixed 4096-byte block of XMEM is used for the flash buffer, which can be accessed via
macros located at the top of FLASHWR. LI B. These macros include FLASH_BUF_PHYS,
the unsigned long physical address of the buffer; FLASH _BUF_XPC and

FLASH BUF_ADDR, the logical address of the buffer viathe XMEM window; and
FLASH BUF_0015 and FLASH BUF_1619, the physical address of the buffer broken
down to be used with the LDP opcodes.

It should assume that the flash address to be written to is passed as an XMEM address
in A: DE. The destination must be aligned with a flash memory sector boundary.

It should check to see whether the sector being writtento isan ID block. If so, it should
exit with an error code (see below). Otherwise, it should perform the actual write oper-
ation required by the particular flash used.

Interrupts should be turned off (set the interrupt level to 3) whenever writes are occur-
ring to the flash. Interrupts should not be turned back on until the write is complete --
an interrupt may attempt to access a function in flash while the write is occurring and
fail.

It should not return until the write operation is finished on the chip.

It should return azero in HL if the operation was successful, a-3 if atimeout occurred
during the wait, or a-4 if an attempt was made to write over the ID block.

Modifications to Dynamic C are pending to allow use of large sector (>4096) flashes in debug-
ging. To incorporate a large-sectored flash into an end product, the best strategy is have a small-
sectored development board.
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11. Hardware Bring-Up Procedure

When a user designs a new microprocessor system around the Rabbit and carefully follows the
Rabbit design conventions, it is possible that the system will not boot up when Dynamic C is con-
nected to the programming connector. This can happen because of adesign error or even because
of arandom hardware defect in the new system. A hardware procedure is available to make it eas-
ier to debug systematically in such a situation.

A series of steps may be performed in order to diagnosis a problem that kegps Dynamic C from
booting.

11.1 Initial Checks
Perform the following checks with the /RESET (pin 37) line tied to ground.

» With avoltmeter check for the +5 V or other operating voltage on pins 3,28,53,78,92
and 42. Check for ground on pins 2,27,39,52,77,89.

» With an oscilloscope check the 32.768 kHz oscillator on XTALAZ2 (pin 41). Make sure
that it is oscillating and that the frequency is correct.

» With an oscilloscope check the main system oscillator by observing the signal CLK
(pin 1). With the reset held low this signal should have a frequency one eighth of the
main crystal or oscillator frequency.

11.2 Diagnostic Test #2
This test goes through a series of steps repeatedly. The steps are:
1. Apply thereset for approximately 1/4 second and then release the reset.

2. Incold boot send the following sequence of triplet characters to serial port A viathe program-
ming connector.

80 OE 20 // sets status pin |ow
80 OE 30 // sets status pin high
80 OE 20 // sets status pin | ow again
3. Wait for approximately 1/4 second and then repeat starting at step #1

While the test is running, an oscilloscope can be used to observe the results. The scope can be trig-
gered by the reset line going high. It should be possible to observe the data characters being trans-
mitted on the RXA pin of the processor or the programming connector. The status pin can also be
observed at the processor or programming connector. Each byte transmitted has 8 data bits pre-
ceded by a start bit which islow and followed by a stop bit which is high (viewed at the processor
or programming connector). The data bits are high for 1 and low for O.

The cold boot mode and the triplets sent are described in Section 3.1 on page 5. Each triplet con-
sists of a 2-byte address and a 1-byte data value. The data value is stored in the address specified.
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The uppermost bit of the 16-bit addressis set to one to specify an internal 1/0 write. The remain-
ing 15 bits specify the address. If the write is to memory then the uppermost bit must be zero and
the write must be to the first 32k of the memory space. The user should see the 9 bytes transmitted
at 2400 bps or 416 ps per bit. The status bit will initially toggle fairly rapidly during the transmis-
sion of thefirst triplet because the default setting of the status bit isto go low on the first byte of
an opcode fetch. While the triplets are being read instructions are being executed from the small
cold boot program within the microprocessor. The status line will go low after the first triplet has
been read. It will go high after the second triplet isfinished. It will return to low again after the 3rd
triplet is transmitted. and stay that way until the sequence starts again.

If this test fails to function it may be that the programming connector is connected improperly or
the proper pull-up resistors are not installed on the SMODE lines. Other possibilities are that one
of the oscillatorsis not working or is operating at the wrong frequency. The reset could be failing.

11.3 Diagnostic Test #3

Thistest checks the functioning of the RAM connected to /CSI/OEL/WEL. Thetest appliesthe
reset, then sends a series of tripletsto set up the necessary control registers. Then it writes several
instructionsto RAM. Finally it begins executing instructionsin RAM. These instructions disable
the watchdog timer.

80 14 05 //set MBOCRto 1 to select RAM
80 09 51 /I ready wat chdog for disable
80 09 54 /I di sabl e wat chdog ti mer

/I sequence of triplets to wite program below to nmenory
/1 starting at address zero.

00 01 21
00 02 01
00 03 00
00 04 06
00 05 10
00 06 7e
00 07 29
00 08 10
00 09 FC
00 OA C3
00 0B 00
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80 24 80 //term nate bootstrap, start at address zero

;test program
ld hl,1
ld b, 16
| oop:
Id a, (hl)
add hl,hl ; shift left
dinz loop ; 16 steps
ip O ; continue test

If thistest runsit will toggle the first 16 address lines. In addition, all of the data lines must be
functioning or the program would not execute correctly.
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Appendix A. Supported Rabbit 2000
Baud Rates

This table contains divisorsto put into TATXR registers. All frequencies that allow 57600 baud up
to 30MHz are shown (as well as afew higher frequencies):

Crystal Example Board 2400 9600 19200 57600 115200
Freq. (MHz) baud baud baud baud baud
1.8432 23 5 2 0 -
3. 6864 47 11 5 1 0
5. 5296 71 17 8 2 -
7.3728 Jackrabbit, not doubled 95 23 11 3 1
9. 2160 Core Module, not doubled 119 29 14 4 -
11. 0592 143 35 17 5 2
12. 9024 167 41 20 6 -
14. 7456 Jackrabbit, doubled 191 47 23 7 3
16. 5888 215 53 26 8 -
18. 4320 Core Module, doubled 239 59 29 9 4
20. 2752 * 65 32 10 -
22.1184 * 71 35 11 5
23.9616 * 77 38 12 -
25. 8048 * 83 41 13 6
27. 6480 * 89 44 14 -
29. 4912 29MHz Jackrabbit * 95 47 15 7
36. 8640 * 119 59 19 9
44,2368 * 143 71 23 11

Thisinformation is calculated with the following equation:
divisor = (crystal frequency in Hz) / (32 * baud rate) - 1

If the divisor isnot an integer value, that baud rate is not available for that frequency (identified by
a“-" inthetable).

If the divisor is above 255, that baud rate is not available without further BIOS modification (iden-
tified by a“*” in the table). To allow that baud rate, you need to clock the serial port desired via
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timer A (by default they run off the CPU clock / 2), then scale down timer A to make the seria
port divisor fall below 256.
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Appendix B. Wait State Bug

B.1 Overview of the Bug

A bug associated with the use of memory wait states was discovered in the Rabbit 2000 processor
approximately 13 months after the product was introduced. This bug was not discovered previ-
ously because the use of wait statesin situations that evoke the problem is unusual. A number of
modificationsto Dynamic C starting with version 7.05 have been made to make it easy, or in some
cases automatic, to avoid problems created by the bug. The bug manifests when memory wait
states are used during certain instruction fetches or during certain read operations. The dataread
instructions are the simpler case and we will describe them first.

Wait states for 1/0 devices work normally and are not associated with this problem.

B.2 Wait States In Data Memory

The two instructions LDDR and LDI R are repeating instructions that move a block of datain mem-
ory. If wait states are enabled, then one wait state less than specified is used on every data read
except the first one in the block. This can be corrected in either of two ways.

An additional wait state can be specified, which will cause there to till be sufficient wait states
when oneislost, or adirective can be issued to the Dynamic C compiler to automatically substi-
tute different instructions for LDDR or LDI R which accomplish the same operation.

The directiveis:

#pragma DATAWAI TSUSED on
#pragma DATAWAI TSUSED of f

Thiswill cause Dynamic C to substitute code as follows:
[dir
becomes
call Idir_func
and
| ddr
becomes
call Iddr_func

This change causes the block move to proceed at 11 clock cycles per byte (on average) rather than
7 clock cycles per byte.

For small memory blocks (<45 bytes), it is more efficient to write the following code:

start _Idi: Idi
jp nov, start_Idi

start _Ildr: |dr
jp nov, start_ldr
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B.3 Wait States in Code Memory

There are two manifestations of the wait state bug in code memory. If wait states are enabled, there
are certain instructions that will execute incorrectly and there are certain other instructions whose
use will reduce the length of the output enable signal.

B.3.1 Instructions Affected by the Wait State Bug

If wait states in code memory are enabled, the 20 instructions in the table below execute incor-
rectly and should not be used:

set b, (ix+d) set b, (iy+d)
resb, (ix+d) resb, (iy+d)
bit b, (ix+d) bit b, (iy+d)
rl (ix+d) rl (iy+d)

rlc (ix+d ric (iy+d)

rr (ix+d) rr (iy+d)

rrc (ix+d) rrc (iy+d)
dla(ix+d) da(iy+d)
sra (ix+d) sra(iy+d)
srl (ix+d) gl (iy+d)

These insructions work correctly if there are zero wait states. If wait states are desired, equivalent
instructions work without any problem. For example:

can

SRA (| X+8)
be replaced by:

LD B, (1 X+8)
SRA B
LD(| X+8) , B

13 cl ocks

9 cl ocks
4 cl ocks

10 cl ocks

Any of theregisters A, H, L, D, E, B, C can be used to hold the intermediate value, so you should
be able to find a free register.

For:
BIT 3,(IX+4) ; 10 clocks
use:
LD B, (I X+4) 9 cl ocks
BIT 3,B ; 4 clocks
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If the atomic nature of the operation isimportant then the operation can be shifted to the hl index

register. For example:
SET 3, (| X+4)

Useinstead:

PUSH HL
PUSH DE
LD HL, I X
LD DE, 4
ADD HL, DE
SET 3, (HL)
POP DE
POP HL

B.3.1.1 Dynamic C version 7.05
Starting with version 7.05, Dynamic C does not generate any of the instructions in the table above,
and they are not used in the library routines. If any of these instructions are used in an application
program, awarning will be generated by the compiler.

B.3.1.2 Prior versions of Dynamic C

In versions of Dynamic C prior to 7.05, thelibrary, SLI CE. LI B, contains one of these instruc-
tions. bit b, (iy+d). Do not usewait states with slice statements in these earlier versions of
Dynamic C. If any of the instructions in the table above are used in an application program, no

warning is generated and you are on your own.

B.3.2 Output Enable Signal and Conditional Jumps

If wait states are enabled for code memory, the memory output enable signal is shortened by one
clock cyclefor thefirst byte read after any conditional jump instruction that does not jump. Thisis

not the same aslosing await state, and in some cases the shortened output enable signal will not

cause a problem. The conditional jump instructions are;

jp cc, m
jr cc, e
djnz e

cc (condition code) is one of the following:

NZ, Zero flag not set;

Z, Zeroflag s¢t;

NC, Carry flag not set;

C, Carry flag set;

LZ, Logica/Overflow flag is not set;
LO, Logica/Overflow flag is st;

P, Sign flag not s=t;

M Sign flag set

cc (condition code) is one of the following:

NZ, Zero flag not set;
Z, Zeroflag set;

NC, Carry flag not set;
C, Carry flag set;
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B.3.2.1 Workaround for Wait State Bug with Conditional Jumps
One way to compensate for the shortened output enable signal is to add one more wait state than
would otherwise be needed. An example of the memory access with the shortened output enable
signal is shown in the figure below.

R T chip select
X X address
output enable

L - — —

lost part of output enable
signa

Wait State Bug Memory Read, 1 Wait State

B.3.3 Output Enable Signal and Mul Instruction

If wait states are enabled for code memory, the length of the output enable signal isreduced to a
single clock cycle for the first instruction byte fetch after a multiply (mul ) instruction. Thisisthe
length the output enable signal would be if there were zero wait states. The read of thisbyteis
aways along read cycle (the same as 10 wait states) since it is shared with the execution of

mul .This effectively precludes the use of mul with wait states unless the following condition is
met: the length of time from the start of the output enable signal to when the data becomes ready
to sampleislessthan 1 clock cycle - 9 nanoseconds.

If the clock doubler is used alternate clocks may have slightly different lengths and a slightly
gtricter standard may need to be applied.

B.3.4 Alternatives to Wait States in Code Memory

If the code memory is slow and requires wait states at a certain clock speed, the simplist alterna-
tiveisto lower the clock speed so that no wait states will be required. Lowering the clock speed to
2/3 of its previous value has the same effect as adding one wait state. Lowering the clock speed to
1/2 isthe same as 2 wait states. Lowering the clock speed to 1/3 isthe same as 4 wait states. The
clock speed can be cut in half by turning of the clock doubler. The clock speed can be divided by 8
by enabling the clock divider.

Another way to avoid wait statesis to run normally with the clock doubler enabled, and when you
need to execute code from the dower memory turn off the clock doubler. This doubles the length
of the memory cycle, which is equivaent to adding 2 wait states.
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B.4 Enabling Wait States

Memory wait states can be specified independently for each of 4 different addressing zonesin the
memory space. The 4 memory bank control registers (MBx CR) control the wait states inserted for
memory accesses in each zone. The number of wait states can be programmed as 0, 1, 2 or 4. The
principle reasons for enabling memory wait states are:

1. During startup of the Rabbit 2000, wait states are automatically set to 4 wait states.
Unlessit has been modified, the BIOS promptly sets the processor to zero wait states.

2. Enabling wait states can be used as a strategy for reducing power consumption. This
can still be done if the restrictions and work-arounds detailed in this chapter are
adhered to. For example, you don’t use the 20 instructions that execute incorrectly.

3. A slow flash memory used for data storage may be interfaced to the processor as a
memory device and it may require wait states. Thiswill still work aslong as only data
accesses are made to the memory. If instructions are to be executed from the memory,
then the restrictions and work-arounds detailed in this chapter must be adhered to.

B.5 Summary

In atypical design implementation, wait states are not used for access to the main instruction
memory. Normally the processor clock speed is selected so that with zero wait states the processor
memory cycle is matched with the instruction memory access time. Hence, the wait state bug will
not be encountered by most users.

If the memory used is fast enough to run at zero wait states and the 20 failing instructions are not
used, then inserting wait states will not cause problems. Thus, when the Rabbit starts up after a
reset and maximum wait states are enabled there will not be a problem. Nor will there be a prob-
lem if wait states are inserted to conserve power. Controller boards produced by Z-World or Rab-
bit Semiconductor will not experience the wait state bug unless the default setup in the BIOS is
overridden.

Z-World flash write routines may move code into RAM memory and execute it there in order to
perform awrite on the flash code memory. These routines automatically avoid any wait state bug
problems.

Wait states in memory used for data are not a problem because of the compiler directive that can
be used to avoid the bug. There is no reason to avoid wait states for data memory.
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L egal Notice

Rabbit Semiconductor products are not authorized for use as critical componentsin life-
support devices or systems unless a specific written agreement regarding such intended
use is entered into between the customer and Rabbit Semiconductor prior to use. Life-sup-
port devices or systems are devices or systems intended for surgical implantation into the
body or to sustain life, and whose failure to perform, when properly used in accordance
with instructions for use provided in the labeling and user’s manual, can be reasonably ex-
pected to result in significant injury.

No complex software or hardware system is perfect. Bugs are always present in a system
of any size. In order to prevent danger to life or property, it is the responsibility of the sys-
tem designer to incorporate redundant protective mechanisms appropriate to the risk in-
volved.
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