RABBI T

Rabbit 2000™

Microprocessor Development Kit
Getting Started

010118 -D

Rabbit 2000 Development Kit Getting Started Manual
Part Number 019-0068 ¢ 010118- D + Printed in U.S.A.
Copyright

© 1999 Rabbit Semiconductor « All rights reserved.

Rabbit Semiconductor reserves the right to make changes and improvements to its prod-
ucts without providing notice.

Trademarks

¢ Dynamic Ce is aregistered trademark of Z-World, Inc.

Windowsris aregistered trademark of Microsoft Corporation

Jackrabbit™ is a trademark of Z-World, Inc.

Rabbit 2000™ is a trademark of Rabbit Semiconductor

Notice to Users

When a system failure may cause serious consequences, protecting life and property
against such consequences with a backup system or safety device is essential. The buyer
agrees that protection against consequences resulting from system failure is the buyer’s
responsibility.

Thisdeviceis not approved for life-support or medical systems.

All Rabbit Semiconductor products are 100 percent functionally tested. Additional testing
may include visual quality control inspections or mechanical defects analyzer inspections.
Specifications are based on characterization of tested sample units rather than testing over
temperature and voltage of each unit. Rabbit Semiconductor may qualify components to
operate within arange of parameters that is different from the manufacturer’s recom-
mended range. Thisstrategy is believed to be more economical and effective. Additional
testing or burn-in of an individual unit is available by special arrangement.

Company Address

Rabbit Semiconductor

2932 Spafford Street
Davis, Cdifornia 95616-6800
USA

Telephone: (530) 757-8400
Facsimile: (530) 757-8402

Web site: http://www.rabbitsemiconductor.com

Rabbit 2000 Development Kit

Table of Contents

About This Manual
O 1 11 0o (W Tox 1 o o TSR 1
O QL] 1= 1 (=TSSP 1
D22 B To o ¥ 19 4 g 1 7= (o o OSSR 1
1.3 An Overview of Dynamic C for the Rabbitcccceereiereecreeee e 2
2. Detailed Installation INSEIUCLIONS.........coiiiieiierieeie e s ee s 5
2.1 SOFftWEAIE INSLAITBLION ... ettt b e s bbb b e b s 5
A2 €1 11 To [0 To 1= o LU T 5
2.2.1 Prototyping BOard.........ccceoveeveiinesireeeeesese sttt s e sre e enesrenes 6
2.2.2 JacKrabbit BOAIdceiieuiieieiee e e 7
2.3 Sarting DYNAIMIC C ...ttt sttt ettt b et e sb et e et e se b e s st ebesb e besbeseenbenes 8
G 0T o L 0T =11 P 9
3.1 Running Sample Program DEMOJRL.C........ccccoeeiereieeieceesesecie et enee e sse e snessesns 10
RS T aTe | 1= = o] o 1 oo USSR 11
3.2.1 WALCH EXPrESSION....cvitiitiieeie ettt ses e saesbe e see st st sbe b e se e e e e e e e se e e ebessessesnens 1
I 1= o] | TR 11
3.2.3 Editing the Programottt s s snen 12
3.2.4 Watching Variables DyNamiCallycccoeieieirieninine e 12
3.2.5 SUMMArY Of FEAIUIES.......coiitiieiiteie ettt bt st ae e sbesne s 12
3.3 Cooperative MUITITASKINGceiveieeeeiie ettt e e ese e e eseerensesneseenen 13
3.4 Advantages of Cooperative MUItitasking........cceiereiererereneeeesesesesese s eseeseereesesee e seesees 15
4, SOftWaAre REFEIEINCE. ... oottt sb e neenns 17
g RV o = 2N o o UL 0)V =10 T o 17
4.1.1 Operating SysStem FrameWOrKccccoeveeereeeeieseece st sre e 17
A2 1]O DIIVEIS...c.eitieiete ettt sttt stttk b e st b se ke st b e st ek s e ke se et e se et st et s ee e te e 18
A2 1 INITTAITZAIION ..t 18
272 0 1o - IO U111 | 18
2 0C T AN = oo @ 11 oL 19
A A AN = oo I o T 21
4.3 Serial COMMUNICALION DIIVEIS......coiiiiiiieie ettt s e st e e se e e 22
4.3.1 Open and ClOSE FUNCHIONScciureeireeere ettt et sne s 22
4.3.2 Non-Cofunction Blocking INput FUNCLIONScccooierirerenene e 23
4.3.3 Non-Cofunction Blocking Output FUNCLIONS..........ccreroirerienierie e 24
4.3.4 Single-User Cofunction INPUt FUNCLIONScccoiiiriiniininere e 25
4.3.5 Single-User Cofunction OULPUL FUNCLIONSccoeriiierinienie e 26
4.3.6 Circular BUuffer FUNCLIONScc.oiiiieeeeceere et 27
ApPPENdiX A. SPECITICAIIONS......ccueceeitieierie et e e se e e aesreesreeneeenes 29
Schematics

Getting Started Manual

Rabbit 2000 Development Kit

About ThisManual

This manual providesinstructionsfor installing, testing, configuring, and interconnecting
the Rabbit 2000 microprocessor using the Jackrabbit controller and the Jackrabbit Devel-
opment board.

Assumptions

Assumptions are made regarding the user’s knowledge and experience in the following
areas.

» Understanding of the basics of operating a software program and editing files under
Windows on a PC.

» Knowledge of basic assembly language and architecture for controllers.
For afull treatment of C, refer to the following texts:

The C Programming Language by Kernighan and Ritchie (published by Prentice-
Hall).

and/or
C: A Reference Manual by Harbison and Steel (published by Prentice-Hall).
Pin Number 1

o O O O

A black square indicates pin 1 of all headers. Pinl—m o o o

M easurements

All diagram and graphic measurements are in inches followed by millimeters enclosed in
parenthesis.

Getting Started Manual

1. Introduction

The Rabbit 2000 a a new and powerful microprocessor. Both hardware and software
design are easy with the Rabbit.

This kit has the essentials that you need to design your own a microprocessor-based sys-
tem, and includes a compl ete software development system (Dynamic C). This Develop-
ment Kit contains a powerful single-board computer (the Jackrabbit board). With this kit
you will be ableto write and test complex software. You will be able to prototype circuits
that interface to a Rabbit 2000 microprocessor.

1.1 Kit Contents
Theitemsin the kit and their useis as follows:

e CD-ROM with Dynamic C software and Rabbit 2000 documentation. You may install
this software by inserting the disk into your CD-ROM drive. If it doesn’t start automat-
icaly, click on “setup.exe.” This software runs under Windows ‘95, ‘98 and Windows
NT. We suggest taking the option to load the documentation to your hard disk. The
documentation isin HTML or Adobe PDF format, and may be viewed with a browser.

» Jackrabbit controller board. Thisis acomplete controller board that includes a Rabbit
2000 processor, 128K of flash memory and 128K of RAM (Random Access Memory).
You can use this board to demonstrate the use of the Rabbit 2000.

» Prototyping Board. The Jackrabbit board can be plugged into this board. The Prototyp-
ing Board includes various accessories such as pushbutton switches, LEDs, and a
beeper. In addition, you can add your own circuitry.

* Programming cable. Thisisa cable that is used to connect your PC serial port to the
Jackrabbit board to write and debug C programs that run on the Jackrabbit board.

» Loose partskit. This bag of parts contains parts that you can solder to the Prototyping
Board for various demonstrations.

« Wall transformer. Thisis used to power the Jackrabbit board. The wall transformer is
supplied only for Development Kits sold for the North American market. The Jackrab-
bit board in the Development Kit can also be powered from any DC voltage source
between 9V and 15V. Higher voltages can be used, but may make the regulator rather hot.

1.2 Documentation

Our documentation is provided in paperless form on the CD-ROM included in the Devel-
opment Kit. (A paper copy of this“Getting Started” manual isincluded.) Most documents
are provided in two formats: HTML and PDF. HTML documents can be viewed with an
internet browser, either Netscape Navigator or Internet Explorer. HTML documents are
very convenient because all the documents are hyperlinked together, and it is easy to navi-
gate from one place to another. PDF documents can be viewed using the Adobe Acrobat
reader, which is automatically invoked from the browser. The PDF format is best suited
for documents requiring high resolution, such as schematics, or if you want to print the
document. Don’t print a hardcopy from the HTML manuals because they have no page

Getting Started Manual 1

numbers and the cross-references and table of contents links only work if viewed on line.
The PDF versions contain page number references to allow navigation when reading a
paper version of the manual. To view the online documentation with a browser, open the
filedef aul t . ht minthedocs folder. When you open the def aul t . ht mfile with your
browser, you will see a page similar to that shown below.

RABEIT =g i

Rabbit Semiconductor
Documentation

Rabie H000
Y PO O S S S50
User's Marial Desigreer's Handbook

rting Sarfed Eanusl Dila Shesl %

Rabbk
Eicropmcesesr F AL

Dymamic © [Rabbit Yersion) i
Reference Marual Saftware Motes

Lo

-
B

1.3 An Overview of Dynamic C for the Rabbit

The Rabbit 2000 is programmed using Z-World's Dynamic C, an integrated development
environment that includes an editor, a C compiler, and a debugger. Library functions pro-
vide an easy-to-use interface for the Jackrabbit board included with the Development Kit.

The Jackrabbit board included with the Development Kit isa powerful board that includes
a complete Rabbit microprocessor system. A Prototyping Board that includes pushbutton
switches, LEDs, and a beeper can be plugged into the Jackrabbit board. By writing pro-
grams that run on the Jackrabbit board, you can flash the LEDs, beep the beeper, and oth-
erwise demonstrate the capabilities of the Rabbit. Schematics for both boards are included
on the CD-ROM in PDF format.

The Jackrabbit board has a standard Rabbit programming connector, which isa 10-pin,

2 mm header. A programming cable is used to connect a PC serial port (COM port) to the
Jackrabbit board. The programming cable has alevel converter board in the middle of the
cable since the programming connector supports CMOS logic levels, and not the RS-232
levelsthat are used by PC serial ports. When the programming cable is connected,
Dynamic C running on the PC can hard reset the Jackrabbit board and cold boot it. The
cold boot includes compiling and downloading a BIOS program that stays resident while
you work. If you crash the target, Dynamic C will automatically reboot and recompile the
BIOS if it sensesthat a target communication error occurred.

2 Rabbit 2000 Development Kit

You have a choice of doing your software development in the flash memory or in the static
RAM included on the Jackrabbit board. There are 128K in each memory. Versions of the
Jackrabbit board are available that support only 32K of static RAM. If you use one of
these boards, you must do development in flash memory. The advantage of working in
RAM isto save wear on the flash, which is limited to about 100,000 writes. Note that an
application can only be developed in RAM, but cannot run standalone from RAM after the
programming cable is disconnected. All applications can only run from flash.

When using flash, the compile to afileis followed by a download to the flash. The disad-
vantage of using flash isthat interrupts must be disabled for approximately 5 mswhenever
abreak point is set in the program. This can crash fast interrupt routines that are running
while you stop at a breakpoint or single-step the program. Flash or RAM is selected on the
Options-Compiler menu.

Dynamic C provides a number of debugging features. You can single-step your program,
either in C, statement by statement, or in assembly language, instruction by instruction.
You can set breakpoints, where the program will stop, on any statement. You can evaluate
watch expressions. A watch expression is any C expression that can be evaluated in the
context of the program. If the program is at a breakpoint, awatch expression can view any
expression using local or external variables. If the program is running and a call to the
debugger isincluded in the user’s code (r unwat ch() ;), it is possible to evaluate watch
expressions using global variables only while the target program continues to run, slowed
down only by the need to refresh adisplay in responseto a <ctrl-U> command.

Getting Started Manual 3

Rabbit 2000 Development Kit

2. Detailed Installation I nstructions

Chapter 2 contains detailed instructions for installing the software on your PC and for con-
necting the Jackrabbit board to your PC in order to run sample programs.

2.1 Softwarelnstallation

You will need approximately 10 megabytes of free space on your hard disk. The software
can beinstalled on your C drive or any other convenient drive.

2.2 Getting Hooked Up

Figure 1 below shows an overview of how the serial and power connections are made to
Jackrabbit board, the Prototyping Board, and to your PC.

9-pin DE9 Prototyping Board
plug Beeper
—
[e]
3
pl E— N
Your PC \ 10 p/l: il
PC COM 2 mm PROG t
port connector
CMOSto RS-232 Jackrabbit
Level = Board
Converter Wall Transformer

Figure 1. Jackrabbit Hookup Connections

Getting Started Manual 5

6 9 1s s €S S
e B Te @ @ @
5 T 99| Tsa zsa ssa vsa ssa esa mmo‘wwo
aNo = o1 00A = 159/ o ol ano oo wmw“_
N o oM+ % ano = o3 ivan [eXe] O O O
ZAH [J]o o[€AH N380I[Jo DUﬁ OO
OAH o o3 1AH ==
g = e oo| @oowwEEEED
23d o o[J}3d -G8y []o o[+68¥ - = § 9
¥3d C]o ofe3d aNo o o[aNe — == n
93d {0 o[s3d 90d > © [ad HEIEE b= d
N9 e o[/3d ¥ad o o[7sad 13s3d
0aM] o o[%10d zad = s[3ead - p SS ¢
98d o o l8d 0ad o o7 1ad = - 5
¥8d |0 o[s8d ova= o[3va fo) p p kel
28d C}o o[¢ad oav o o[anev = | —=— _
08d o o7 lad 90d] o o[20d 00| OO = “ino| O O rsury
ano e o[ane ¥0d o o[50d —_mve+[O O [e) —__ 1v8A|O O |anopy
w«“WDDMMM = NUmWDDMSD_ mm eAHO O O mm w1s|© O |Nagol
o = o o[10d
2vd C]o o[evd a MWMHDDUQXF o o| #H O O o O oo| NS|O O pns
== < axy o o1 oxy o o|ano|O O [03fN[O OO OO0 OO0 OO0OO0 |oo| 92400 oon
aNO |m a[190A 14 oA T]m o[Tane P 01340 O [ca#8OO0 'S OO O0OOO0O0OO0O0O0O0 (918 .80 O [s8ry
" (@) mmmuoo y3t80O0 s OO0 00000000 mm n_zoOOozowR.n
=S 0 o] 534 O O [934£8dO0 S OO OO0 O0O0000O0 |54 40O add
o 0| z3d 0 O [ang8d|OO0 'S OO 00000000 |oo mamoovomm
0 B4 O O [0am¥d|lO O BSAI0 000000000 |20| ¢adlO O [ead Z,
mm 18d|O O [084¥d|OO|1SA0 000000000 mm 1ad|O O oon_W
o o] 584 O O |rees¥dOOPSTI0O 000000000 |, wa|lO O o<n_W
00| ead O O [z8a"OO[SCO 000000000 |oa| anev|O O oav
00| 184 O O [084t¥d|OO|SAI0O 000000000 |20| ,0d0 O |09d>S
mmnzoOO angvd Q0 ESCO 000000000 mm 50d|O O [roa &
o o| 2% 0 O |owa'vOO IO OO O OO0 OO0 (54| ¢d|O O fod
00| svd| O O [0 O |I'SIN OO0 0O O0O0 000 |oo 10d|O O oom%
1™ O] evd| O O |evd - = =0 oxOO0 mx.rmRn
vd|O O |ovd p— —1ox4[|O O |exu X
20A| O O |ang| ------ p— Z [ono|O O oo>m.nu
= jy — =15

that the battery isfacing up. Plug headers J4 and J5 into the sockets on the Prototyping

To attach the Jackrabbit board to the Prototyping Board, turn the Jackrabbit board over so
Board asindicated in Figure 2.

2.2.1 Prototyping Board

Rabbit 2000 Development Kit

Figure 2. Attaching Jackrabbit Board to Prototyping Board

2.2.2 Jackrabbit Board

1. Connect the 10-pin PROG connector of the programming cable to header J3 on the
Jackrabbit board as shown in Figure 3. (If your programming cable has only one unla-
beled 10-pin connector, attach that connector to header J3 on the Jackrabbit board.)
Connect the other end of the programming cable to a COM port on your PC. Note that
COML1 isthe default COM port used by Dynamic C.

U1

JACKRABBIT BOARD

\

R0

1

“”E“

INO fFAOND

a

Colored side
lines up with
pin 1

Programming
connector

Diagnostic [oiac(]
connector

|
|
|
|
|
=
g |
BP1____C I
[T T ey |
usc =)
= |
g B
u3 g I
nnon0nononan
ge B = I
g = =
g E = |
g E =
£| Rabbit 2000 5 g |
= B = |
E E 9 ‘
=
= B |
‘
IooooooooooT |
|
Em g ‘
oL Y3 :
ik
HiH ‘
|
JACKRABBIT Z-World, Inc. |
|
|
|
|
|

PROTOTYPING BOARD

PC COM port

Figure 3. Power and Programming Cable Connections
to Jackrabbit Board

2. Hook up the connector from the wall transformer to header J1 on the Jackrabbit board
asshown in Figure 3. The orientation of this connector is not important since the VIN
(positive) voltage isthe middle pin, and GND is available on both ends of the three-pin

header J1.

3. Plug inthewall transformer. The Jackrabbit board and the Prototyping Board are ready

to be used.

A RESET button is provided on the Prototyping Board (see Figure 2) to alow ahar-

ware reset.

Getting Started Manual

2.3 Sarting Dynamic C

Once the Jackrabbit board is connected as described in Section 2.2, start Dynamic C by
double-clicking on the Dynamic C icon or by double-clicking on dwc. exe inthe
Dynamic C directory.

Dynamic C assumes, by default, that you are using serial port COM1 on your PC. If you
are using COM 1, then Dynamic C should detect the Jackrabbit board and go through a
sequence of steps to cold-boot the Jackrabbit board and to compile the BIOS. If an error
message appears, you have probably connected to a different PC seria port such as
COM2, COM3, or COM4. You can change the serial port used by Dynamic C with the
OPTIONS menu, then try to get Dynamic C to recognize the Jackrabbit board by selecting
Recompile BIOS on the Compile menu. Try the different COM portsin the OPTIONS
menu until you find the one you are connected to. If you can’t get Dynamic C to recognize
the target on any port, then the hookup may be wrong or the COM port is hot working on
your PC.

If you receive the “BIOS successfully compiled ...” message after pressing <ctrl-Y> or
starting Dynamic C, and this message is followed by “Target not responding,” it is possi-
ble that your PC cannot handle the 115,200 bps baud rate. Try changing the baud rate to
57,600 bps as follows.

1. Open the BIOS source code file RABBI TBI CS. Cin the BI OS directory.

2. Changetheline
#def i ne USE115KBAUD 1 /] set to O to use 57600 baud
to read as follows.
#def i ne USE115KBAUD 0 /] set to O to use 57600 baud

3. Locate the Serial options dialog in the Dynamic C Options menu. Change the baud
rate to 57,600 bps, then press <ctrl-Y>.

If you receive the “ BIOS successfully compiled ...” message and do not receive a“ Target
not responding” message, the target is now ready to compile a user program.

8 Rabbit 2000 Development Kit

3. Sample Programs

A series of sample programsis provided in the Dynamic C Sanpl es/ JackRab folder.
You can load a sample program by using the File Open menu in Dynamic C. The sample
programs are listed in Table 1.

Table 1. Jackrabbit Sample Programs

DEMXJRL. C

DEMOIR2. C

DEMOIR3. C

DEMOIRG. C

JRI OTEST. C

JRIO_COF. C

RABDBO1. C

RABDB02. C

Thefirst five sample programs provide a step-by-step introduction to the Jackrabbit board.
Additional sample programs illustrate more advanced topics.

Each sample program has comments that describe to the purpose and function of the pro-
gram.

Getting Started Manual 9

3.1 Running Sample Program DEMOJR1.C
This sample program can be used to illustrate some of the functions of Dynamic C.

First, open the file DEMQJRL. C, whichisinthe Sanpl es/ JackRab folder. The program
will appear in awindow, as shown in Figure 4 below (minus some comments). Use the
mouse to place the cursor on the function name WrPortl in the program and type <ctrl-H>.
Thiswill bring up a documentation box for the function W Por t | . In general, you can do
thiswith all functionsin Dynamic C libraries, including librariesyou write yourself. Close
the documentation box and continue.

C prograns begin with main
NULL is a nmacro for a zero pointer

mai n() { : :
wite to SPCR register to
/mltlallze paral 'el port A
W Por t | (SPCR, NULL, 0x84) ; Wite all 1's to port A
to turn off all LEDs
W Por t | (PADR, &PADRShadow, Oxf f) ;
Start a | oop

while(l) { «— Set bit 2 to a “1”

: LED DS3 of f.
Bi t W Por t | (PADR, &PADRShadow, 1, 2) ; Time del ay by counting

for(j=0; j<25000; j++); <&— :, 25 000
Bi t W Por t | (PADR, &PADRShadow, 0, 2) ; T
for(j=0; j<1000; j++); \Set bit 2 toa “0"

turning LED DS3 on
Il end while(1) Count to 1000 for a shorter
time del ay
} // end of main
End of the endl ess | oop

Note: See Rabbit 2000 Microprocessor User’s Manual
(Software Chapter) for details on the routines that read and
write 1/0 ports.

Figure 4. Sample Program DEMOJR1.C

To run the program DEMQJRL1. C, load it with the File menu, compileit using the Compile
menu, and then run it by selecting Run in the Run menu. The LED on the Development
Board should start flashing if everything went well. If this doesn’t work review the follow-
ing points.

» Thetarget should be ready, which isindicated by the message “BIOS successfully
compiled...” If you did not receive this message or you get a communication error,
recompile the BIOS by typing <ctrl-Y> or select Recompile BIOS from the Compile
menul.

10 Rabbit 2000 Development Kit

» A message reports that “No Rabbit processor detected” in cases where the Jackrabbit
and Prototyping Board are not connected together, the wall transformer is not con-
nected, or isnot plugged in. (The red power LED lights whenever power is connected.)

» The programming cable must be connected to the Jackrabbit board. (The colored wire
on the programming cableis closest to pin 1 on header J3 on the Jackrabbit board, as
shown in Figure 3 on page 7.) The other end of the programming cable must be con-
nected to the PC seria port, possibly, using the 9- to 25-pin adapter if necessary. The
COM port specified in the Dynamic C Options menu must be the same as the one the
programming cable is connected to.

e To check if you have the correct serial port, select Compile, then Compile BIOS, or
type <ctrl-Y>. If the “BIOS successfully compiled ...” message does not display, try a
different serial port using the Dynamic C Options menu until you find the one you are
plugged into. Don’'t change anything in this menu except the COM number. The baud
rate should be 115,200 bps and the stop bits should be 1.

3.2 Single-Sepping

Compile or re-compile DEMQIR1. C by clicking the Compile button on the task bar. The

program will compile and the screen will come up with a highlighted character (green) at

the first executable statement of the program. Usethe F8 key to single-step. Each timethe
F8 key ispressed, the cursor will advance one statement. When you get to thef or (j =0,

j < ... statement, it becomes impractical to single-step further because you would have

to press F8 thousands of times. We will use this statement to illustrate watch expressions.

3.2.1 Watch Expression

Type <ctrl-W> or chose Add/Del Watch Expression inthe Inspect menu. A box will
come up. Type the lower case letter j and click on add to top and close. Now continue
single-stepping with F8. Each time you step, the watch expression (j) will be evaluated
and printed in the watch window. Note how the value of j advances when the statement
j ++ is executed.

3.2.2 Break Point

Move the cursor to the start of the statement:

for(j=0; j<1000; j++);
To set abreak point on this statement, type F2 or select Breakpoint from the Run menu.
A red highlight will appear on the first character of the statement. To get the program run-
ning at full speed, type F9 or select Run on the Run menu. The program will advance
until it hitsthe break point. Then the break point will start flashing and show both red and
green colors. Notethat LED DS3isnow solidly turned on. Thisis because we have
passed the statement turning on LED DS3. Notethatj inthewatch window hasthe value
25000. Thisis because the loop above terminated when j reached 25000.

To remove the break point, type F2 or select Toggle Breakpoint on the Run menu. To
continue program execution, type F9 or select Run from the Run menu. Now the LED
should be flashing again since the program is running at full speed.

Getting Started Manual 11

You can set break points while the program is running by positioning the cursor to a state-
ment and using the F2 key. If the execution thread hits the break point, a break point will
take place. You can toggle the break point off with the F2 key and continue execution with
the F9 key. Try thisafew timesto get the feel of things.

3.2.3 Editing the Program

Click on the Edit box on the task bar. Thiswill set Dynamic C into the edit mode so that
you can change the program. Use the Save as choice on the File menu to save thefile
with a new name so as not to change the demo program. Savethefileas MYTEST. C. Now
change the number 25000 in the for (.. statement to 10000. Then use the F9 key to recom-
pile and run the program. The LED will start flashing, but it will flash much faster than
before because you have changed the loop counter terminal value from 25000 to 10000.

3.2.4 Watching Variables Dynamically

Go back to edit mode (select edit) and load the program DEMOJIR2. C using the File menu
Open command. This program isthe same as the first program, except that a variable k
has been added along with a statement to increment k each time around the endless loop.
The statement:

runwat ch();

has been added. Thisisadebugging statement that makes it possible to view variables
while the program is running.

Use the F9 key to compile and run DEMOIR2. C. Now type <ctrl-W> to open the watch
window and add the watch expression k to the top of the list of watch expressions. Now
type <ctrl-U>. Each time you type <ctrl-U>, you will see the current value of k, whichis
incrementing about 5 times a second.

As an experiment add another expression to the watch window:
k*5
Then type <ctrl-U> several times to observe the watch expressionsk and k* 5.
3.2.5 Summary of Features
So far you have practiced using the following features of Dynamic C.

» Loading, compiling and running a program. When you load a program it appearsin an
edit window. You can compile by selecting Compile on the task bar or from the Com-
pile menu. When you compile the program, it is compiled into machine language and
downloaded to the target over the serial port. The execution proceeds to the first state-
ment of main where it pauses, waiting for you to command the program to run, which
you can do with the F9 key or by selecting Run on the Run menu. If want to compile
and start the program running with one keystroke, use F9, the run command. If the pro-
gram is not already compiled, the run command will compile it first.

» Single-stepping. Thisis done with the F8 key. The F7 key can also be used for single-
stepping. If the F7 key is used, then descent into subroutines will take place. With the
F8 key the subroutine is executed at full speed when the statement that callsit is
stepped over.

12 Rabbit 2000 Development Kit

e Setting break points. The F2 key is used to turn on or turn off (toggle) abreak point at
the cursor position if the program has already been compiled. You can set a break point
if the program is paused at a break point. You can also set abreak point in a program
that isrunning at full speed. Thiswill cause the program to break if the execution
thread hits your break point.

» Watch expressions. A watch expression isa C expression that is evaluated on command
in the watch window. An expression isbasically any type of C formulathat can include
operators, variables and function calls, but not statements that require multiple lines
such asfor or switch. You can have alist of watch expressionsin the watch window. If
you are single-stepping, then they are all evaluated on each step. You can also com-
mand the watch expression to be evaluated by using the <ctrl-U> command. When a
watch expression is evaluated at abreak point, it is evaluated asif the statement was at
the beginning of the function where you are single-stepping. If your programisrunning
you can also evaluate watch expressions with a <ctrl-U> if your program hasar un-
wat ch() command that is frequently executed. In this case, only expressionsinvolv-
ing global variables can be evaluated, and the expression is evaluated asif it werein a
separate function with no local variables.

3.3 Cooperative Multitasking

Cooperative multitasking is a convenient way to perform several different tasks at the
sametime. Anexample would be to step a machine through a sequence of stepsand at the
same time independently carry on a dialog with the operator viaa human interface. Coop-
erative multitasking differs from a different approach called preemptive multitasking.
Dynamic C supports both types of multitasking. In cooperative multitasking each separate
task voluntarily surrenders its compute time when it does not need to perform any more
activity immediately. In preemptive multitasking control is forcibly removed from the
task viaan interrupt.

Dynamic C has language extensions to support multitasking. The mgjor C constructs are
called costatements, cofunctions, and slicing. These are described more completely in the
Dynamic C Reference Manual. The example below, sample program DEMQIR3. C, uses
costatements. A costatement is away to perform a sequence of operations that involve
pauses or waits for some external event to take place. A complete description of costate-
mentsisin the Dynamic C Reference Manual. The DEMQJR3. C sample program hastwo
independent tasks. Thefirst task flashes LED D34 once a second. The second task uses
button S1 on the Prototyping Board to toggle the logical value of avirtual switch,

vswi t ch, and flash DS1 each time the button is pressed. Thistask aso debounces button
SL.

Getting Started Manual 13

int vswitch;
mai n() {

W Port | (SPCR, NULL, 0x84) ;
W Por t | (PADR, &PADRShadow, 0xf f) ;
vswi t ch=0;
while (1) {
Bi gLoopTop() ;

(1)

/] state of virtual
/1 begin nmain program
/1 set up parall el

switch controll ed by button S1
port A as out put
/[l turn off all LEDs

[/ initialize virtual
/1 Endl ess | oop

swtch of f

/1 Begin a big endl ess | oop

Il first task flash LED DS4 every second for 200 milliseconds

(2) costate {
Bi t W Por t | (PADR, &PADRShadow, 0, 3) ;
(3) wai t f or (Del ayMs(200));
Bi t W Por t | (PADR, &PADRShadow, 1, 3) ;
wai t f or (Del ayMs(800)) ;
(4 1}

/'l second task -

debounce switch #1 and toggle virtual

/1 begin a costatenent

/1 LED DS4 on

/1 light on for 200 ns
/| LED DS4 of f

/1 light off for 800 ns
/'l end of costatenent

switch vswitch

[/ check button 1 and toggle vswitch on or off

costate {
(5) i f(BitRdPortl (PBDR, 2)) abort; //
wai t f or (Del ayMs(50)) ; /1

i f(BitRdPortl| (PBDR, 2)) abort; [/
vsw t ch=! vswi t ch;

/'l toggle virtual

i f button not down skip out
wait 50 ns
if button not still down skip out

swi tch- button was down 50 ns

while (1) { /1l wait for button to be off 200 ns
wai t for (Bi t RdPort |1 (PBDR 2)); // wait for button to go up
wai t f or (Del ayMs(200)); /1l wait for 200 nmilliseconds
if(BitRdPortl (PBDR, 2)) break;// if button up break
} /1 end of while(l)
} /1 end of costatenment

/1l make LED agree with vswitch if vsw tch has changed

(6) i f((PADRShadow & 1) == vswi tch) {
Bi t W Por t | (PADR, &PADRShadow, ! vswi t ch, 0) ;
)
(7) } /1l end of while |oop, go back to start

} // end of main, never cone here

The numbersin the left margin are reference indicators and are not a part of the code.
Load and run the program. Note that LED D$4 flashes once per second. Push button S1
severa times and note how LED DS1 istoggled.

Theflashing of LED D34 is performed by the costatement starting at the line marked (2).
Costatements need to be executed regularly, often at least every 25 ms. To accomplish
this, the costatements are enclosed in awhile loop. The term whileloop isused as a handy
way to describe a style of real-time programming in which most operations are donein
oneloop. Thewhileloop starts at (1) and ends at (7). The function Bi gLoopTop() is
used to collect some operationsthat are helpful to do once on every pass through the loop.
Place the cursor on this function name Bi gLoopTop() and hit <ctrl-H> to learn more.

14 Rabbit 2000 Development Kit

The statement at (3) waits for atime delay, in this case 200 ms. The costatement is being
executed on each pass through the big loop. When awai t f or condition is encountered
the first time, the current value of Ms_TI MERis saved and then on each subsequent pass
the saved value is compared to the current value. If awai t f or condition is not encoun-
tered, then ajump is made to the end of the costatement (4), and on the next pass of the
loop, when the execution thread reaches the beginning of the costatement, execution
passes directly to thewai t f or statement. Once 200 ms has passed, the statement after
the waitfor is executed. The costatement has the property that it can wait for long periods
of time, but not use alot of execution time. Each costatement is alittle program with its
own statement pointer that advances in response to conditions. On each pass through the
big loop, aslittle as one statement in the costatement is executed, starting at the current
position of the costatement’s statement pointer. Consult the Dynamic C Reference Man-
ual for more details.

The second costatement in the program debounces the switch and maintains the variable
vswi t ch. Debouncing is performed by making sure that the switch is either on or off for
along enough period of time to ensure that high-frequency electrical hash generated when
the switch contacts open or close does not affect the state of the switch. Theabort state-
ment isillustrated at (5). If executed, the internal statement pointer is set back to the first
statement within the costatement, and a jump to the closing brace of the costatement is
made.

At (6) ause for ashadow register isillustrated. A shadow register is used to keep track of

the contents of an 1/0 port that iswrite only - it can’'t be read back. If every time awriteis
made to the port the same bits are set in the shadow register, then the shadow register has

the same data as the port register. In this case atest is made to see the state of the LED and
make it agree with the state of vswitch. Thistest is not strictly necessary, the output regis-
ter could be set every time to agree with vswitch, but it is placed here to illustrate the con-
cept of ashadow register.

To illustrate the use of snooping, use the watch window to observe vswi t ch while the
program isrunning. Add the variable vswi t ch to the list of watch expressions. Then
togglevswi t ch and the LED. Then type <ctrl-U> to observe vswi t ch again.

3.4 Advantages of Cooperative Multitasking

Cooperative multitasking, as implemented with language extensions, has the advantage of
being intuitive. Unlike preemptive multitasking, variables can be shared between differ-
ent tasks without having to take elaborate precautions. Sharing variables between tasksis
the greatest cause of bugs in programs that use preemptive multitasking. 1t might seem
that the biggest problem would be response time because of the big loop time becoming
long as the program grows. Our solution for that is a device caused dlicing that is further
described in the Dynamic C Reference Manual.

Getting Started Manual 15

16

Rabbit 2000 Development Kit

4. Software Reference
4.1 More About Dynamic C

Dynamic C has been in use worldwide since 1989. Dynamic C is specially designed for
programming embedded systems. Dynamic C features quick compile and interactive
debugging in the real environment. A complete reference to Dynamic C is contained in
the Dynamic C Reference Manual.

Dynamic C for Rabbit™ processors uses the standard Rabbit programming interface. This
isa 10-pin connector that connects to the Rabbit serial port A. It is possible to reset and
cold-boot a Rabbit processor viathe programming port. No software needs to be present
in the target system. More details are available in the Rabbit 2000 Microprocessor User’s
Manual.

Dynamic C cold-boots the target system and compilesthe BIOS. The BIOSisabasic pro-
gram of afew thousand bytesin length that provides the debugging and communication
facilities that Dynamic C needs. Once the BIOS has been compiled, the user can compile
his own program and test it. If the BIOS fails because of a crash, anew cold boot and
BIOS compile can be done at any time.

Each type of Rabbit microprocessor system can have a different BIOS, or the BIOS pro-
gram can be customized by using #def i ne options. The Jackrabbit board is supplied
with one BIOS, and a flash memory and a RAM memory to hold the program. RAM
memory is useful for holding a program while debugging is being done because it is more
flexible than flash memory.

Dynamic C does not use include files, rather it has libraries which are used for the same
purpose, that is, to supply function prototypes to programs before they are compiled.
Libraries are much easier to use compared to include files.

Dynamic C supports assembly language, either as separate programs or as fragments
embedded in C programs. Interrupt routines may be written in Dynamic C or in assembly
language.

4.1.1 Operating System Framework

Dynamic C does not include an operating system in the usual sense of acomplex software
system that is resident in memory. The user has complete control of what isloaded asa
part of his program, other than those routines that support loading and debugging and
which are inactive at embedded run time. However, certain routines are very basic and
normally should always be present and active.

» Periodicinterrupt routine. Thisinterrupt routine isdriven by the Rabbit periodic inter-
rupt facility, and when enabled creates an interrupt every 16 ticks of the 32.768 kHz
oscillator, or every 488 us. Thisroutine drives three long global variables that keep
track of thetime: SEC_TI MER, M5_TI MER, and TI CK_TI MER that respectively count
seconds, milliseconds, and 488 pusticks. These variables are needed by virtually all
functions that measure time. The SEC_TI MERs set to seconds elapsed since 1 Jan
1980, and thus also keeps track of the time and date. The periodic interrupt routine
must be disabled when the microprocessor enters deepy mode and the processor clock

Getting Started Manual 17

Isoperating at 32.768 kHz. The interrupt routine cannot complete at this slow speed
before the next tick of the periodic interrupt. In this situation, the hardware real-time
clock can be read directly to provide the time.

» Watchdog support routines. Although the Rabbit watchdog can be disabled, thisis not
recommended since the watchdog is an essential facility for recovering from crashes.
Very few systems are crash-free in redl life.

4.2 |/O Drivers

The Jackrabbit board contains four high-power digital output channels, two D/A converter
output channels, and one A/D converter input channel. These I/O channels can be
accessed using the functions found inthe JRI O. LI B library.

4.2.1 Initialization

Thefunctionj ri ol ni t () must be called before any other function fromthe JRI O. LI B
library. Thisfunction initializesthe digital outputs and sets up the driver for the analog
input/outputs. The digital outputs correspond to the Rabbit processor’s port E bits 0-3,
and the analog /O uses timer B; bits 1, 2, and 4 of port D; and bits 6 and 7 of port E.

Thefunctionvoidj ri ol ni t () initializesthe /O driversfor Jackrabbit. In particular, it
sets up parallel port D bits 1, 2, and 4 for analog output, port E bits 0-3 for digital output,
and starts up the pulse-width modulation routines for the A/D and D/A channels. Note
that these routines can consume up to 20% of the CPU’s processing power; the routines
use timer B and the B1 and B2 match registers.

4.2.2 Digital Output

The Jackrabbit board contains four high-power digital output drivers, HY0-HV 3, on
header J4. These can be turned on and off with the following functions from the library
JRI O LI B.

HVO0, HV1, and HV 2 are open-collector sinking outputs, and are ableto sink upto 1 A
(200 mA for the BL1810 and BL 1820) from a 30 V source connected to the K line on
header J4. HV 3 isasourcing output that is
able to source up to 500 mA (100 mA for the
BL 1810 and BL 1820) from a 30 V source

connected to the K line. Cut gray trace
as shown

Remember to cut the trace between K and
Vcc inside the outline for header JP2 on the

2 top side of the Prototyping Board if you are

supplying K from a separate power sup- Top Side
ply. An exacto knife, a precision grinder

tool, or ascrewdriver may be used to cut Prototyping
through the traces as shown in Figure 5. Board

Failure to do this could lead to the destruc-
tion of the Rabbit 2000 microprocessor and
other components once the Jackrabbit is
connected to the Prototyping Board.

Figure 5. Cut Trace on Prototyping Board
When Vcc and K Are Different

18 Rabbit 2000 Development Kit

voi d di gQut (i nt channel, int val ue)

sets the state of a digital output bit.
jriolnit mustbecalled first.
channel isthe output channel number (0-3 on the Jackrabhbit).
val ue istheoutput value (0 or 1).

void di gOn(i nt channel)

sets the state of adigital output bit to on (1).
jriolnit mustbecalled first.
channel isthe output channel number (0-3 on the Jackrabbit).

void digOf(int channel)

sets the state of a digital output bit to off (0).
jriolnit mustbecaled first.
channel isthe output channel number (0-3 on the Jackrabbit).

See the sample program JRI OTEST. Cfor an example of using the digital output functions.
4.2.3 Analog Output

The two analog output channels on the Jackrabbit (DAO and DA 1 on header J5) are con-
trolled by a pulse-width modulation (PWM) driver. Thisrequiresthe use of somefraction
of the CPU cycles when the driver is running (up to 20% when both D/A channels are
used). A voltageis selected by giving avaue from 0 to 1024 to the driver, corresponding
roughly to 0.1 V to 3.5V on DAO. Because of the PWM interrupt frequency, the PWM
driver can provide a continuous range of voltage output in the range from 0.1V to 3.0V
for DAO, and 0.6 V t0 3.6 V for DA1. These ranges can be specified with the constants
PWM_M N, PAWW_MAXO, and PWWM_MAXL. In other words, setting channel DAO to the value
PWv_ M Nwill output 0.1V, and setting it to PMW_MAXO0 will output 3.0 V. Similarly, set-
ting DA1 to PMW_M Nwill output 0.6 V, and setting it to PWW_MAX1 will output 3.6 V.
Vaues below PWv_ M N will be rounded down to 0, and values above PWM_MAXO
(PwWv_MAX1 for DA1) will be rounded up to 1024.

The output channels can also be set in an “awayson” or “aways off” mode, which does
not require CPU cycles. The “alwayson” mode is set by requesting an output value of
1024, and will provide about 3.4 V on channel DAO, and 3.6 V on DA1. The*“aways off”
mode is selected by asking for avalue of 0, and provides an output of around 0.1V on
DAOand 0.0V on DAL

Getting Started Manual 19

See Table 2 for asummary of the possible analog output voltages corresponding to values
givenintheanaQut function.

Table 2. Typical Analog Output Voltages Corresponding
to Values in anaOut Function

Channel 0 PWI M N | PWI MAX 1024
DAO 0.08V 0.08V 2875V 34V
DAl 0.004 V 0.63V 36V 36V

The output value is set using the following function.
voi d anaQut (i nt channel, int val ue)

sets the state of an analog output channel.
jriolnit mustbecaled first.
channel isthe output channel number (0 or 1 on the Jackrabbit).
val ue isaninteger from 0-1024 that corresponds to an output voltage as shown in Table 2.

See the sample program JRI OTEST. Cfor examples of using theanaQut function.

Effect of Interruptson Analog I/O

The stability of the voltage output (and hence the voltage input determination as well)
depends on the ability of the driver to respond quickly to interrupt requests. Dynamic C
debugging, use of the pri nt f function, or any serial communications can disrupt the
pulse-width modulation utilized by the driver and cause fluctuations in the voltage out-
puts. Avoid using serial communicationsor pri nt f statements during portions of your
program where the voltage must remain steady. Also be aware that debugging and run-
ning Dynamic C in polling mode will cause fluctuations. Finally, be certain to disable the
PWM drivers by setting the output values to 0 or 1024 when you are done using them to
free up the CPU.

Calibration of Valuesto Voltages

The analog output channels on the Jackrabbit board can be more accurately calibrated for
each individual Jackrabbit board in the following manner (calibration of DAOQ is assumed
in this example, calibration of DA 1 would proceed similarly):

e Set desired channel output to PWW_ M N.

Measure voltage V,;, on DAO.

Set desired channel output to PWW_MAXO.

Measure voltage V5, on DAO.

A linear relation between input value and voltage can now be calculated:

20 Rabbit 2000 Development Kit

Vmax — Vmin

~ PWM_MAXO0—PWM_MIN

m
b = Vmax—mxPWM_MAXO

voltage = mx vaue+Db
4.2.4 Analog Input

The analog input channel on the Jackrabbit (ADO on header J5) works by varying analog
output channel DAO until its voltage matches the input voltage on ADO. DAO obviously
cannot be used while an input voltage is being measured, although channel DAO is till
available. The value returned corresponds to the value that DAO required to match the
input voltage (you would call anaQut (0, val ue) for DAQ to provide that same voltage).
If the value returned is negative, then the function considers the value suspect for some
reason (most likely afailure of the DAO voltage to settle quickly). The value can be taken
asis, or another measurement can be done.

voi d anal n(int channel, int *val ue)

Analog input for the Jackrabbit analog input channel (ADO).
jriolnit mustbecalled first.
channel istheinput channel number (0 only on the Jackrabbit).

An integer between 0 and 1024 will be returned in val ue, corresponding to a voltage obtained if
output channel DAO was set to that value. If avalueisfound, but the voltage has not appeared to
fully settle, the value will be negative (but equal in magnitude to the found voltage) to allow
remeasurement if desired.

See sample program JRI OTEST. C for an example of the use of anal n.

Two versions of the analog input function are available: the standard function, listed above, that
does not return until the measurement has been made, and a cofunction version that can be called
from within a costatement. This cofunction version allows other tasks to be performed while the
voltage match is being made. The voltage measurement will take ten calls of the cofunction ver-
sion to make a measurement.

voi d cof _anal n(int channel, int *val ue)
The parameters are identical to those described above for anal n.

See sample program JRI O_COF. Cfor an example of the use of cof _anal n.

Getting Started Manual 21

4.3 Serial Communication Drivers

Theinterface to the Rabbit serial library, RSERI AL. LI B, isdesigned to provide users with
a set of functions that send and receive entire blocks of data without yielding to other
tasks, a set of single user cofunctions that send and receive data but yield to other tasks,
and a set of circular buffer functions.

The naming conventionisser Xf n:

ser - serid

X -theport being used: A, B, C, or D

fn - the function being implemented
For example, ser Bget c() isthe serial port B function get c() , which returns a charac-
ter.

The Rabbit serial functions are listed in the following groups.

Open and Close Functions

Non-Cofunction Blocking Input Functions
Non-Cofunction Blocking Output Functions
Single-User Cofunction Input Functions
Single-User Cofunction Output Functions

Circular Buffer Functions

4.3.1 Open and Close Functions

The open and close functions enable and disable serial communication over the specified
port.

I nt ser Xopen (|l ong baud);

Currently only 8N1 transmission (8 data bits, no parity, 1 stop bit) is supported. Theopen function sets
up the interrupt service routine vector.

Parameters

baud—desired baud rate in bits per second
Return Value

1—The baud rate set on the Rabbit is the same as the input baud rate.
0—The baud rate set on the rabbit does not match the input baud rate.

I nt serXclose ();

Disablesthe serial port interrupt service routine.

Parameters

None.
Return Value

1

22 Rabbit 2000 Development Kit

4.3.2 Non-Cofunction Blocking I nput Functions

These are simple functions that do not use Dynamic C costatements. If no input data are
availablewhen called, they return immediately with appropriate statusinformation in their
return value. Once they begin to receive characters, they do not yield to other tasks until
they complete their operation or until a character-to-character timeout period el apses.

I nt serXgetc ();

Getsasingle character. Always returnsimmediately, either with the next available input byte, or with —1
if noneis available.

Parameters

None
Return Value

An integer with return character in the low byte. No character is represented by areturn of —1.

int serXread (void *data, int |ength, unsigned | ong tnout);

Reads ablock of characters. Returnsthe number of bytesread from an input serial stream. The streamis
considered to be ended when al | engt h bytes have been read or when the timeout period el apses wait-
ing for data to appear in the input buffer.

Parameters

dat a—Destination data structure. The user must ensure datais allocated for at least length bytes.
| engt h—The number of bytes to read.
t mout —The number of milliseconds to wait for receipt of each byte before timing out.

Return Value

The number of bytes read into data until timed out or until all length bytes have been read.

Getting Started Manual 23

4.3.3 Non-Cofunction Blocking Output Functions

These are simple functions that do not use Dynamic C costatements. They immediately
begin to perform their task, not yielding to other tasks until all characters have been written.

I nt serXputc (char c);
Writes a character to the serial port.
Parameters
C—Character to write
Return Value
1 for success, 0 if the character could not be written to the port.
I nt serXputs (char *s);
CdlsserXwrite (s, strlen (s)).
Parameters
S—Null-terminated character string source to write to the serial port.
Return Value
The number of characters written.
int serXxwite (void *data, int |ength);
Writesablock of | engt h bytesto the serial port.

Parameters

dat a—Destination data structure. The user must ensure datais allocated for at least length bytes.
| engt h—The number of bytes to read.
Return Value

The number of bytes written to the serial port.

24 Rabbit 2000 Development Kit

4.3.4 Single-User Cofunction Input Functions

These are Dynamic C cofunctions. If the input buffer they use islocked or becomes full
during the course of their operation, they yield to other tasks, but do not return to execute
the next statement within their own costatement block until they have completed their operation.

scofunc int cof _serXgetc ();
Reads a single character from the seria port, yielding when not successful, and only returning when a
character is successfully read.

Parameters

None
Return Value

An integer with the character read in the low byte.

scofunc int cof _serXgets(char *s, int |ength,

unsi gned | ong tnout);
Reads a null-terminated string, completes its execution when a carriage returnisread, | engt h number
of charactersare read, or the character to character timeout period el apses after thefirst character isread.

It yieldsto other tasks while the input buffer islocked or becomes empty during its execution, and only
returns control to the following statement in its own costatement block when it completes.

Parameters

dat a—Destination data structure. The user must ensure datais allocated for at least length bytes.

| engt h—The number of bytes to read.

t mout —The number of milliseconds to wait for each character after the first character is read.
Return Value

1—CRor | engt h bytesreadinto s.
0—Function times out before reading CR or | engt h bytes.

scofunc int cof_serXread(void *data, int |ength,
unsi gned | ong tnout);
Reads a block of characters, completesits execution when | engt h number of characters are read, or
the character-to-character timeout period elapses after the first character isread. It yieldsto other tasks

while the input buffer is locked or becomes empty during its execution and only returns control to the
following statement in its own costatement block when it completes.

Parameters

dat a—Destination data structure. The user must ensure datais allocated for at least length bytes.
| engt h—The number of bytes to read.

t nout —The number of milliseconds to wait for each character after the first.
Return Value

The number of bytes read.

Getting Started Manual 25

4.3.5 Single-User Cofunction Output Functions

These are Dynamic C cofunctions. If the output buffer they use islocked or becomes
empty during the course of their operation, they yield to other tasks, but do not return to
execute the next statement within their own costatement block until they have completed
their operation.

scofunc void cof serXputc (char c);

Writes a single character to the serial port, yielding to other tasks when unsuccessful, and returning only
when the character is successfully written.

Parameters

c—Character to write to the serial port.

Return Value

None

scofunc voi d cof _ser Xputs(char *s);

Writes a null-terminated character string to the serial port, yielding to other tasks when unsuccessful or
whenever the buffer isfull, returning only when the string is successfully written.

Parameters

S—Null-terminated character string written to the serial port.
Return Value

None

scofunc void cof _serXwite (void *data, int |ength);

Writesablock of charactersto the serial port, yielding to other tasks when unsuccessful or whenever the
buffer isfull, returning only when all the data is successfully written.

Parameters

dat a—Source data structure to write to the serial port.
| engt h—Number of charactersin datato write.

Return Value

None

26 Rabbit 2000 Development Kit

4.3.6 Circular Buffer Functions
These functions act on or report status of the circular transmit/receive buffers.
Macro definitions are used to establish the buffer sizes:

X1 NBUFSI ZE—read buffer size, where X isA, B, C, or D

X OUTBUFSI ZE—uwrite buffer sizewhere X isA, B, C, or D

The user must define each buffer size for each port being used to be a power of 2 minus 1
with amacro. The size of 2*n - 1 enables masking for fast rollover calculations. If no
value or anillega valueis defined, a default size of 31 will be used and a compiler warn-
ing will be given. When using cofunctions, smaller buffer sizes can yield more frequently
to other tasks, but have therisk of alarge input data stream overrunning the buffer and los-
ing dataif the other task executes for too long relative to the baud rate.

I nt ser Xpeek ();

Returnsthe first character in the receive buffer, if any are available, without removing it from the buffer.
Parameters

None
Return Value

An integer with return character in the low byte. No character is represented by areturn of —1.

voi d ser XrdFlush ();

Flushesthe serial port receive buffer.

Parameters

None
Return Value

None

voi d serXwr Flush ();

Flushes the seria port transmit buffer.

Parameters

None
Return Value

None

Getting Started Manual 27

int serXrdFree ();

Calculates the free space in the serial port receive buffer.

Parameters

None
Return Value

The number of characters the serial port receive buffer can accept before becoming full.

Int serXwFree ();

Calculates the free space in the serial port transmit buffer.

Parameters

None
Return Value

The number of characters the serial port transmit buffer can accept before becoming full.

I nt serXrdUsed ();

Calculates the number of characters ready to read from the serial port receive buffer.

Parameters

None
Return Value

The number of characters currently in the serial port receive buffer.

28 Rabbit 2000 Development Kit

Appendix A. Specifications
Table A-1 lists the electrical, mechanical, and environmental specifications for the Jack-

rabbit board.
Table A-1. Jackrabbit Board Specifications
Parameter Specification
Board Size 3.50" x 2.50" x 0.94" (89 mm x 64 mm x 24 mm)
Humidity 5% to 95%, noncondensing

Input Voltage and Current

7.5V to 25V DC, 100 mA typical, 150 mA maximum, linear
regulator

Configurable 1/0

44—28 independent
16 shared with onboard peripherals
3 additional shared with programming connector when
programming/debugging

Analog Inputs

One low-grade A/D input—input range 0 V to 3V, 10-hit
resolution, 8-bit accuracy, average acquisition time 150 ms (165 ms
maximum) with 14.7 MHz clock

Analog Outputs

Two filtered and buffered PWM outputs

Digital Outputs

Four high-current, high-voltage outputs—3 sink up to 200 mA and
35V standoff

Clock 14.74 MHz
SRAM 128K (supports 32K-512K)
Flash EPROM 128K (supports 32K-512K)
. Five 8-bit timers, one 10-bit timer with two match registers, five
Timers .
timers are cascadable
Four serial ports—two RS-232 or one RS-232 (with CTS/RTS) and
Sexiel Po one RS-485
! s One 5V CMOS-compatible line
Two seria ports can be clocked
Seria Rate Upto 1.84 MHz
Watchdog/Supervisor Yes
Time/Date Clock Yes
Backup Battery Yes, 3V lithium coin type, 950 mA-h, includes external battery

holder

Getting Started Manual

29

30

Rabbit 2000 Development Kit

Schematics

Getting Started Manual

REVISION HISTORY REVISION APPROVAL
J1 | LINEAR POWER SUPPLY
Y P vCC DESCRIPTION PROJECT APPROVAL | DOCUMENT | APPROVAL
& % D2 1 78?5 s REV | ECO ENGINEER DATE CONTROL DATE
=z q .
Sl R LSRN 47 o N o - RAM F [E10888| SEE ECO FOR HISTORY RJH |09MARGE| KAH |@9MAR@®
o + GND
1QuF 100nF P4 A
v 1€ 2 9) R12 CHANGE C3 TO LOW ESR TYPE CAP, ADD FLASH SELECT bl ol ke |19APRO®
i J7 l @ ‘ohm)» G 11098 | ,MPER JP2, TRACKS A/W @ REV—B RJ 9APRO
H [E11053|CHANGE U6 FROM 75176B TO SP483EN TO MATCH BOM| RJH |26MAY@@| KAH |18MAYQQ
SWITCHING POWER SUPPLY VeC /4\ A BACKUP. s 2 J |E11182| CHANGE R13 FROM 1K TO 1.3K TO CONFORM WITH UL
f BATTERY o1 REGULATIONS ON CUREENT LIMITING RESISTORS
14 i U2 it . VBAT MMBT5088LT1 R
VOouT
Blsc onp QUTUT }; o2 rrm |4 B, 3 R13 | vereR14 v
- ~ 1| 33euH |3 + C3 3 . 13k
7 |[PWR_oND D1 s3F |G Gl
12 {pbwR”GND ON/OFF|—2 9\
1N5819 AL Lith
4 [M2575-5.9 Qéarlrt:lmi
Coin R8O
(@ ohm)
”V"’g e TABLE A
HV2 AV
HV1 e R81
HVO
K (8 ohm) REF DEVICE DEVICE VOLTAGE INFORMATION DEVICE: FILTER CAP
DES AGND | GND | VCC [VRAM [NO CONNECTS REF DES(s)
R82
A/D, D/A Circuits . (@ ohm) ui | 78esT
<2> () =—mbilcZ - ngh-Power U2 | LM2575-5.0 2-6.9.11.13.16.19—24
1 2,27,39 | 3,28,53, C32 — PINg, C30,31,33,34
vee e Drlvers us RABBIT 2000 52,77,89 | 78,92 42 C12 — PIN42 (VRAM)
R34—£ —ng A/D Window e J2 VBAT U4 | MAX232A 15 16 c14
o11% 17 lcze C | eer R1 us SRAM 16 32 c15
ADe D 02 o [N Too Low S aaore T 20N 3 < Z 100 U6 | SP4B3EN 5 8 c13
8 R36 PE7 4H
R35 LM324 AN
200% 10 (@ ohm) HVA u20 LM324 11 4 C21
oA 1% + ~U20:C ’
DAQ() l u21 ETC811 C24
R33 13 12\y20:D - 6 02 u22 FLASH 24 8 c35
1z LM324 1 VW PEe MMBT4401 l Decoupling Capacitors
12 1, (2 ohm) NOTES: UNLESS OTHERWISE SPECIFIED;
R32 Too High . W2 1. ALL RESISTOR VALUES ARE IN OHMS, 1/1@W, 5%
ST 1% vee 2. ALL CAPACITORS ARE 5@VDC OR HIGHER.
C29 3. THE ORIGINATION SOURCE OF A VOLTAGE IS REPRESENTED V_ClE U3 U3 U3 U3 VRAMis us vee
A R29 NdBTasats T oo BY (vcc), AND ALL REFERENCES TO THAT VOLTAGE i i 1 h T uze
A" ARE REPRESENTED BY (oo) B LR L LHE L0 LS. L%
T
2 MOkRZZ e OUTLINED CIRCUIT MAY NOT BE STUFFED DEPENDING T T T T l—T lA
: ‘ | Rae ON MODEL, SEE STUFFING CHART FOR CLARIFICATION. v Voo
3 R21 D1 ue U4 U2t U3 U22
1 W 5. COMPONENT VALUES SHOWN WITH AN ASTERISK ()
110k R55 R23
: R2S o i 12 y HY3, FOLLOWING THE VALUE, MAY HAVE DIFFERENT VALUES, %g’nﬁl?;gﬁ i%gnF i%’%nF lg?ggnF
1% 1% WW*l (@ ohm)x OR MAY NOT BE STUFFED DEPENDING ON MODEL. (@ ohm) . T T T T T
R48 SEE STUFFING CHART FOR CLARIFICATION.. . . .
A A -_PE3 Q25 c27
A~ D/A Converters e MMBT4401+ 100nF v
R28
pA1C D = el LK Qo8 l APPEND THE FOLLOWING DRAWING CONTENT: e
MMBT3906% R52 DOCUMENTSWHEN CHANGING [prawN BY: (INITIAL RELEASE) -
2
28 | i THISDOCUMENT: JS 27MAY99 SCHEMATIC DIAG RAM
28l e 1.8k 1/20 2 WORLD
R24 AN REVISED BY:
A = 1.8k 172w KAH 31AUGRO BL1 8@@ SERI ES / 2900 SPAFFORD ST.
X DAVIS, CA 95616
1z c22 2 ! wes R36 s APPROVALS: INITIAL RELEASE 530- 757 - 4616
A A 3 D24 (@ ohm)x PROJECT ENGINEER: \JAC K RAB B IT
o5 282 / 1ot RJH 210CT99 [5%
ENGINEERING MANAGER: @ 9 @ — @@ 9 2
Copyright 2000, Z—World, Inc. SIGNATURES DATE SCALE NONE | RELEASE DATE 210CT99 | SHEET 1 OF 3

J4 VCC +RAW
G | EAG2 SRAM=x
% fPAO PA® d VCC N US: OPTIONAL 512K, 128K, OR 32K SRAM, ONLY ONE DEVICE INSTALLED,
4 _PA1 PA1 T R57 47k PBO / N/
5 %Az PAZ VAL e 32K HAS OVERLAPPING FOOTPRINT Y FLASH#* N
o *PAs PAS REOMVA7k PB2 U5_ALT_PINOUT Y A8 20 |
= e PROCESSOR T T
8 PAS PAS R6 T ANV 47k PB4 A3 10 [o Loal 11 De A3 12 [U5 13 Do AT 19 22 DI
9 oPA6 PAG R6Z van 47k PBS oo 16 [U3 ol 17 ne J A2 9 12 DI A2 1) 1798152 b A2 1g [A] DAl 23 o2
18 °PA7 PAT b1 15 18 Al Al g% A R Al 10 A AR A3 17 |2 DQ2i55—p3
. 221311 Al A2 1702 12 12 1702 A3 DQ3
11 GND PEQ-7 / D2 14 19 A2 AD 7 15 D3 Ao 9 17 D3 Ad 1B 26 b4
$12 %\ 2 / \ 53 13 |P2 A2I—g A3 A5 5|~ 1703 =53 A s | 1703752 A5 15 |4 DQ4197— o5
<15 *Fea g re-{D3 A3 A4 1704 . |V 1704 et 2-1A5 DQ5
13_°PBo PBO D4 12 61 Ak A7 5 17 D5 A7 7 19 D5 A6 14 28 D6
D4 A4 A5 1705 gl \AS 1705 et 21AB DQ6
14 °PBI i PBI D5 11 62 A5 ATZ 4 18 D6 Al4 6 20 D6 A7 13 29 D7
15_°PB2 PB2 vee o6 10|22 ASI63 A6 AB 3 |48 1706119 b7 a8 5 |h8 1708151 b7 Tas 3|7 ba7
16 <PB3 PB3 c9 RS232 o7 9|8 A8l 64 Ay NSEI TR 1707 TAs g7 [V 1707 Ay o |8
R 1014 A7 A8 e 2L Apg e £ AQ
17 PB4 PB4 1eenF 73 A8 A2 24 A2 26 Al 31
18 P85 FB5 o N A9 A 21 A9 Af o3 |9 AT 1 |Ale 32 /0E0
19 PB6 PB6 2 —].c8 PAO 81 A97 Ale | A6 | o3 |A19 | 22 /OET A6 25 |A10 | 24 /OET NYERVENE OB ™ /weo
. v+ e Ale A11 OE A11 OE 12 wepd e
20 °PB7 PB7 6 U4 100nF PAT 82 75 A1) AT 2 P27 /wEl AT 2 20 /WET A3 4 30 /cSg
21_ g0 W0o v 3] Pz 83 |a1—20] INHI Az A9 [26 |ni2 WED2 7CsRAM a9 78 [\12 WE D22 /CsRAM Al A13 CEp="——
. c1- B2 1pA2_sp2 A12 A13 cspel- L2 e 28013 csp2z A R -
2 355 P 11 02+j4 ~PA3 B4 Ipa3_sD3 1322 A A Tata - YD A5 11 s s
54 i 100nF clo 85 lpA4-SD4 Ny L SRAM 32K X 8 MA15 SRAN TVPE ~ A6 10 | A16 |512<X8| 256K X 8| 128K X 8
$24 opET | PE7 n TeonF PR 86 66 ATS ATE 2 A7 6
25 _PE6 PE6 5 PA6 g7 |PAS—SDS NEI Al szl =g A6 Fs ATE 9 | "MOrA17 |A17 | NC
26 %PES Pes c2- Pa7 B8 |PASSDE NS AT7 SRAM SELECT* jpq VRAM g Y AT 22 B meATE LNC LNC
27 SPE4 PEZ ™8 D@ 14 T1OUT | T1N| 11 Pes A7 Al es A18 ©ohm) 128 ks EL T Pop A1B| NC FLASH*
28 °PE3 PE3 79 Al9 > 2 SRAM_SEL SRAM*
20 oPE2 PE2 *C ™c 7 |T20ut T2IN| 10 PC2 . PBE 93 A19 Resistor 515 g (B[3 A17 Ve ypo FLASH SELECT
25 5 PE2 o<} PBT o4 |PB-CLKB o) Jumper G 1 (@ ohm)
31_°PED PEQ RXB RXB 13 [R1IN R10UT| 12 PCS PB2 o5 |-B]1-CLKA |8 scse 7CS0 7CS0 Fs_AT8 [O|p 1-2 128K/256K .
32 SoND | PB3 o6 |FB2—/SWR Cseps— st 7cS A8 2|3 2-3 512k Resistor
%.__‘33 *Hve RXC RXC 8 [R2IN R20UT| 9 PC3 PB4 97 PB3—/SRD CS1 P2 3] Jumper
34 SRV PB5 98 PB4‘5A10 cszp /Cse)
35 *HV2 239A PB6 99 ggg‘% oEglE. 7OE8 /OE® /OE® 70E® 7OE®
36 i PB7_100 |05 < s EATTN SE2P76 /oK 7OET 7OET
38 RAW WEp|pB2__/WEe /WEQ /WEQ /WEQ /WEQ
GND
S5 see A — e ol wer pee 2 - -
vee Pc2 P2 58 15ca T BuFEN[33 IOBENB I0BENB CSRAN /CSRAM
v — 4 PC3-RXC IoRD[3Z—
RES 47k _Fet pod Pt 56 lpc4-TxB IoWRp31—
K K R64an 47k PC3 PCS PC5 55 |nce_ryB RESET3Z_/RES /RES vee Raz VRAM Te3 P2 A CS
V3 RE5VVN 47k PC5 PC6 PC6 54 38 STATUS STATUS Q
mg V2 Qeem 17k PC7 FC7 PC7 51 |PCE-TXA STATUS @ o) » C VRAM
AV PC7-RXA 36 SMODE® SMODE@ onm ontrol
mé HVe gmggg? 35 SMODET SMODET R38
enay - AR5 {eoe okt L —ape oS (@-0hm) POWER E G ke
<> PR \} Pz 45|07 woTouT R68\n 47K TO (@ ohm)+ | | /csram
<>CD —— £L0=Z \ o aLPD3 VBATH4Z—|VRAM =57
DA1 PCo-7 / P05 45 |FD4-ATXB VRAM 32
DA1 DAG / \ m PD5—ARXB §% c7 FDV302P
DA@] ~PDe 44 opg—ATXA 330k 15pF !
AD@ ~FP7__43 lpn7_aRXA xTALAZ 4! | . . | SWITCH
M T L ' R45 Q21
R6 Y4 Y3 10k FDV3@2P
J5 VCC VBAT PE0 30 10M 32.768KHzx[_]|32.768kHz[_]
1 vee T T FE1 29 PE@—10—INTQA 40 SMT i TH T
$2 % ? PEz g |PEI-I1-INTIA XTALA1 . A . Jesran
$3 %o RXB PE3 25 |PE2-12 /RES Q24
4 °RxC RXC PE4 4 |PE3-I3 R4 MMBT3904 VRAM
5 *™XE TXB PEs 23 |PE4-14—INTeB o1 (@ ohm)x ‘ R39
5 oIC e PEs 5, |PES—IS-INTIE XTALB2 — 1, it RA42 AN
PCo -
't Eee PE? 21 Jpe7-17-/5CS RS 29.4912MHzs [7.372MHz« [|2
e K SMT TH Q22
?0 °FC3 PC3 XTALB1 |22 £ 3L /RES MMBT3904
11_oPC4 pC4 RABBIT 200@ 914 (o3
12 PC5 PC5 2200pF
13 °PC6 PC6 PB1 PBI1
14 _°PC7 PC7 WDO WDO
15 AD® ADo PCLK PCLK
16 AGND
17k Do vee A RESET GENERATOR vec
18 PC7 PC7 U21
19 (PDa Pbe rie RS485 PC6 PC6 /RES 2| eeser veel 4
20 681 1
21 PD2 PD2 17 1 .3 R47
22 _PD3 PD3 485+ 6 A U6 | 4 PCo GND MR=— 10k
23 Pb4 PD4 1_PC1 é ETC811L vcec
24 °PD5 PDS 5;@7 R . e J3
PD6 PD6 2
2 e L] s 1M 5 i o 3 PDS_ PC7 PC7 PC7 e 15 [om 0
27 ON0 | Spas3En | R84 PB1 PBI1 PB1 R3 10@ | [+ 3¢ |8 S
<28 N0 R16 47k WA 2 lowa |
29 %B5- 485— 681 /RESET /RESET 5 Ve o 5 E
30 485+ 485+ 1% PC6 PCE PC6 R |FST lmy o
31 GVCC 100 72 |™A <OAa
32 Ve \ PDo-7 STATUS STATUS 8 x5
33 SMoDE@ SMODE® SMODE@ SMODE® *gQ [STATUS @
34 SHODE T SMODET SMODET SMODET MEET) gmggg? o
35 IBENB IOBENB .
36 STATUS STATUS v
g; G'\L[-)r > SIZE DWG NO.
39 JRESET /RESET
G 890—0092
VvV VA Copyright 2000, Z—World, Inc. SCALE NONE | REV LTR J |SHEET 2 OF 3

STUFFING TABLE

MODEL
CIRCUIT PART BL1800 BL181@ BL1820
MAIN us 128K SRAM 128K SRAM 128K SRAM
2
0 ZERO ohm ZERO ohm ZERO ohm
SRAM SELECT | JP1 ACROSS PINS 1—2 | ACROSS PINS 1—2 | ACROSS PINS 1-2
%
< MAIN u22 256K FLASH 128K FLASH 128K FLASH
L
ZERO ohm ZERO ohm ZERO ohm
FLASH SELECT | JP2 ACROSS PINS 1—2 | ACROSS PINS 1—2 | ACROSS PINS 1-2
C13 JuF JuF NOT INSTALLED
R16 681 ohm 681 ohm NOT INSTALLED
§ MAIN R17 220 ohm 220 ohm NOT INSTALLED
@ R18 681 ohm 681 ohm NOT INSTALLED
R84 47k 47k NOT INSTALLED
uée SP483EN SP483EN NOT INSTALLED
< . .
< % MAIN C20 47nF 1uF 1uF
05 C22 47nF AuF uF
Q25 FMMT619 4401 npn 4401 npn
Q26 FMMT619 4401 npn 4401 npn
o MAIN Q27 FMMTB19 4401 npn 4401 npn
g Q@ Q28 FMMT720 3906 pnp 3906 pnp
ay Q29 FMMT619 4401 npn 4401 npn
I
O
T HV3=SINKING | D21 NOT INSTALLED NOT INSTALLED NOT INSTALLED
R55 NOT INSTALLED NOT INSTALLED NOT INSTALLED
HV3=SOURCING | R56 ZERO ohm ZERO ohm ZERO ohm
PROCESSOR Y3 32.768kHz 32.768kHz 32.768kHz
RTC CRYSTAL Y4 NOT INSTALLED NOT INSTALLED NOT INSTALLED
b R4 160 ohms ZERO ohm ZERO ohm
CE?SEELSOR Y1 NOT INSTALLED | 7.37MHz Resonator | 7.37MHz Resonator
Y2 29.49MHz Crystal NOT INSTALLED NOT INSTALLED

MODEL
CIRCUIT PART BL1800@ BL1810 BL1820
BT1 3V Li 3V Li NOT INSTALLED
J2 INSTALLED INSTALLED NOT INSTALLED
MAIN R1 10@ ohm 100 ohm NOT INSTALLED
R10 4.3M 4.3M NOT INSTALLED
z R12 NOT INSTALLED NOT INSTALLED NOT INSTALLED
‘,':’ R13 1.3k 1.3k NOT INSTALLED
<
m
o Q1 5088 npn 5088 npn NOT INSTALLED
5 REGULATOR | R14 220k 220k NOT INSTALLED
& R15 2M 2M NOT INSTALLED
D82 NOT INSTALLED NOT INSTALLED NOT INSTALLED
REGULATOR D81 NOT INSTALLED NOT INSTALLED NOT INSTALLED
TEMPERATURE | pg2 NOT INSTALLED NOT INSTALLED NOT INSTALLED
283"UPSETNSAT'°N R8O ZERO ohm ZERO ohm NOT INSTALLED
R81 ZERO ohm ZERO ohm NOT INSTALLED
R82 ZERO ohm ZERO ohm NOT INSTALLED
c23 2200pF 2200pF NOT INSTALLED
D20 914 914 NOT INSTALLED
3 Q20 2N7002 n—ch 2N7002 n—ch NOT INSTALLED
g Q21 FDV302P p—ch FDV3@2P p—ch NOT INSTALLED
3 W/BATTERY | Q22 3904 npn 3904 npn NOT INSTALLED
- BACKUP R37 100k 100k NOT INSTALLED
e R39 10k 10k NOT INSTALLED
s R40 300k 300k NOT INSTALLED
2 R41 47k 47k NOT INSTALLED
o R42 100k 100k NOT INSTALLED
W/0 BATTERY
BACKUP R38 NOT INSTALLED NOT INSTALLED ZERO ohm
L Q23 FDV302P p—ch FDV302P p—ch NOT INSTALLED
o8| W/BATTERY | Q24 3904 npn 3904 npn NOT INSTALLED
w =| BACKUP R45 10k 10k NOT INSTALLED
s R46 22k 22k NOT INSTALLED
o
o § W/0 BATTERY
BACKUP R43 NOT INSTALLED NOT INSTALLED ZERO ohm
> LINEAR C2 NOT INSTALLED AUF AUF
o U1 NOT INSTALLED 7805 LIN REG 7805 LIN REG
o]
[Vp)
o c3 33QuF NOT INSTALLED NOT INSTALLED
z SWITCHING D1 1N5819 NOT INSTALLED NOT INSTALLED
o L1 33QuH NOT INSTALLED NOT INSTALLED
U2 LM2575-5.0 NOT INSTALLED NOT INSTALLED

Copyright 2000, Z—World, Inc.

SIZE DWG NO.

090—-0092

SCALE NONE

| REV LTR

J

| SHEET

3

OF

3

VCC VBAT
J6 A A VBAT vCC REVISION HISTORY REVISION APPROVAL
1 vee | J vee 1 J7
2 oND o0 29 PROJECT | APPROVAL | DOCUMENT | APPROVAL
2 i RXB RYB i> REV | ECO DESCRIPTION ENGINEER DATE CONTROL DATE
RXC RXC
2 zz zz 2 C [E10812 CHANGE VALUE OF R1 FROM 100 OHM TO 3.3 OHMS RJH 1ONOV99| KAH 1ONOV99
7 7
R rot ~ rer o B S5 D [E10904| CORRECT & CLARIFY INFORMATION IN SCHEMATIC RIH |18FEB@@| KAH |18FEBo@
9 PC2 PC2 PC2 pc2 9 2 o1
10 Pe3 Pe3 Pe3 Pcs 10 meser [41]No. E |[E11053(ADD WARNING ABOUT CUTTING TRACE BETWEEN K & VCC
11 PC4 PC4 PC4 Pca 11 RESET
a 12 PC5 PC5 PC5 Pcs 12 Vv
23 = == = 1 5 s4
15 ADo a2 15 1; 1 1 O 5 1 Ne)
8 16 AGND ASND 16 23 o] 2 2 L
17 DA® o 17 ™8 3 g o 3 3 <_(' 4
.CI:J 18 DA1 oAl 18 RXC 4 n | 4 4 s 12V O
19 19 5 [r'4 5 5 3
b — .~] 2 s W | <3 % 2 | B colL RS
21 21 7 7 7 2
o 22 s ros s s 37 8| M (@) 8 8 °|’ O-
é 23 PO4 PD4 Po4 POt 23 P X< 8 = 9 9 w 10A/120V
24 24 10 10
L (025 e oo e me 25 — | ® N e
= %3 ;3; = = zz; gs J4, J5 not loaded.
o | 28 oD | o 28;
> e ¢ G0 288
& 29 485~ 485- 29
30 s see 30 vee vee +RAW
R s LS — - JP2 JUMPER SETTINGS
33 33
s wooe1 34 ¥ " P2 FUNCTION SETTING
35 35 1o Al o2
3 sums s 36 = '\3’\’:,:’ w3 B o e Buzzer 1-2
X wt o0 378 UZZER 174w K ?; gg g X K to +5V 3-5
39 39 g 9, laal J10
0 ot 7 . ot 0 P00 7 o oo iy 1 K to DCIN 5-6
v WA A v IMPORTANT: RI2 RT1 |10KPOTOR [5_g
/RESET /RESET CUT TRACE BETWEEN K AND 10k | THERMISTOR
e e VCC BEFORE CONNECTING K CAN CUT intenab | 9—10
R i TO ANOTHER SOURCE! TRACES IN
RXB RXB JP2 TO DIS—
e e CONNECT
. ‘ . DEVICES
ADO ADO AD@ FROM
PR P2 PDe JACKRABBIT 1
PE4 PE4 PE4 3
Hve Hve Hve
2 o N R ;
PA1 alaa~l o DS2
1 DCIN VCC 1 6o lool oD
el \ e s woie e
3 PAR PAR PAQ PAQ 3 P 10 2 2l 09 pss
4 4 124 |o ol 11 2 1
— e o w5 e 143 10T T3 oer AR 0TS
6 PA3 PA3 PA3 PA3 6 PA7 16, |4 o o 15 Dps8 e
7 PA4 PA4 PA4 PA4 7 PB2 18, |~ ~ 17 =1
8 PAS PAS PAS PAS 8 PB3 20, [Al J19 s T
9 9 22, |q ol 21 2 1
- ox o ST s 2ee 1S9 tos 4TS 0CT3]
g 11 o | N\, ¢ GND 11; 26 SS 25 -
) 12 oo L /S N\ o GND 12; =
@ 13) PBe PBR B0 13 A\V4
< 14 PB1 PB1 PB1 PB1 14
o 15 PB2 PB2 PB2 PB2 15
om 16 PB3 PB3 PB3 PB3 16
— 17 PB4 PBe PB4 PBe 17 AFTER RUNNING DEMO PROGRAMS,
@ L — e e T CAN CUT TRACES IN JP1 TO DISCONNECT
20 PB7 PB7 PB7 PB7 20 DEVICES FROM JACKRABBIT PINS
é X oo wo 21 COPYRIGHT 2000, Z—WORLD, INC.
- e
GND GND
&() 24 Pe7 | PE7 pe7 o 224
S 25 PE6 PES PE6 PEs 25 APPEND THE FOLLOWING DRAWING CONTENT: TITLE
26 PE5 PE5 PES PE5 26
s 57 57 DOCUMENTSWHEN CHANGING [prawN BY: (INITIAL RELEASE) .
B —— = = o THISDOCUMENT: S 11AUG99 SCHEMATIC DIAGRAM / B
™ 29 PE2 PE2 PE2 PE2 29 UKL
30 PE1 PE1 PE1 PEr 30 REVISED BY: vy
31 31
{32 0] - Vinia T 523 KAH 18MAY00 BL1800/JACKRABBIT 2900 SPAFFORD ST.
33 e we 33 TY DAVIS, CA 95616
gg x; z; gg APPROVALS: INITIAL RELEASE P R OTO P I N G B OAR D 530 - 757 - 4616
36 3 W3 36 PROJECT ENGINEER:
T e RAH 180CT9Q |sz DWG NO.
$39 aw g ¢ O 39 ENGINEERING MANAGER: @ 9 @ @ @ 8 8
40 vee vee 40 —
\v4 \v4 SIGNATURES DATE SCALE NONE | RELEASE DATE 180CT99 | SHEET 1 OF 9

SOT-23

b

n
O«a—”’—\+ u3
SOT_2>1—40
- 3 -V,

b

S0T—-23

w0
Oe—”'—\ﬂL u7
SOT_2>1—40
- 3 -V

b

SURFACE MOUNT PROTOTYPING PADS

U2
1 16
8 2 15 8
o 3 14 o)
o 4 13 O
o 7 10 O
OB S .0
16 PIN IC
ulie
1 16
8 2 15 8
o 6 11 o)
o 7 10 o)
Oo—8 E e
6 PIN IC
U11
1 16
8 2 15 8
o 3 14 o)
o 4 13 o)
o 5 12 o)
o 6 11 o)
o 7 10 o)
Oo—8 E e
6 PINIC
ui2
Qe 7] 529
Oo 3 1 O
Oo 4 1 O
Oo 5 1 O
Oo 6 1 O
Oo 7 1 O
8 9
Oo—81 2O
6 PINIC

u13
ot g
Qo3 F1a o8
Qo4 M3 o8
Q5] F2 o8
Q6] M1 o8
Qo7 e o9
Qo5 e 29
Oo—8 0
16 PINIC
u14
Q7| [1538
O 3 14 o0
O 4 13 %e)
Qo—21 H2 -0
O 6 o0
o 7 o0
8
Oo—2- <0
16 PIN IC
R—C1 R—-C7
R-C2 R-C8
R-C3 R-C9
R—C4 R-C10
—_|—1— —_|—1—
R—-C5 R=C11
—_|—1— —_|—1—
R-C6 R-C12
—_|—1— —_|—1—

R-C13
—_|—1—
R-C14
—_|—1—
R-C15
—_|—1—
R-C16
—|1—
R-C17
—_|—1—
R-C18
—_|—1—
R-C19
—_|—1—
R—C2@
—_|—1—
R—C21
—_|—1—
R—-C22
—_|—1—
R-C23
—_|—1—
R—C24
—_|—1—
R—C25
—_|—1—
R-C26
—_|—1—
R-C27
—_|—1—
R—C28
—_|—1—
R—-C29
—_|—1—

R—-C30
—_|—1—

R-C31 R—C49 R-C67 R—-C85
——1— ——1— ——1— ——1—
R-C32 R—-C50 R-C68 R—-C86
——1— ——1— ——1— ——1—
R-C33 R—C51 R—-C69 R—-C87
——1— ——1— ——1— ——1—
R—-C34 R-C52 R-C70 R-C88
—_|— 1 —_|— 1 —_|— 1 —_|— 1
R-C35 R-C53 R-C71 R—-C89
——1— ——1— ——1— —_—1—
R-C36 R—-C54 R-C72 R—-C9@
——1— ——1— ——1— ——1—
R-C37 R—-C55 R-C73 R—C91
——1— ——1— ——1— ——1—
R—-C38 R—-C56 R-C74 R-C92
——1— ——1— ——1— —_—1—
R—C39 R-C57 R—-C75 R-C93
——1— ——1— ——1— —_—1—
R—-C40 R—-C58 R-C76 R—-C94
——1— ——1— ——1— ——1—
R—C41 R—C59 R-C77 R—-C95
——1— ——1— ——1— ——1—
R—C42 R-C6@ R—-C78 R—-C96
——1— ——1— ——1— —_—1—
R—C43 R—-C61 R—-C79 R-C97
——1— ——1— ——1— —_—1—
R-C44 R—-C62 R—-C80 R—-C98
——1— ——1— ——1— ——1—
R—-C45 R—-C63 R—-C81 R—-C99
——1— ——1— ——1— ——1—
R—C46 R-C64 R—C82 R—-C100
——1— ——1— ——1— —_—1—
R—C47 R-C65 R—-C83 R—-C101
——1— ——1— ——1— —_—1—
R—-C48 R—-C66 R-C84 R-C102
——1— ——1— ——1— ——1—
SIZE DWG NO.
SCALE NONE | REV LTR E |SHEET 2 o 9

RABBIT BOARD

REVISION HISTORY REVISION APPROVAL
PROJECT APPROVAL | DOCUMENT | APPROVAL
REV ECO DESCRIPTION ENGINEER DATE CONTROL DATE
X1 [-———| Engineering Prototype Release A/W Rev—A RH - - =
A E10684@| INITIAL RELEASE OF SCHEMATIC, PCB A/W @ REV—-B
+V +V
J2 ¢l J1
RXS@ ! L, ny 1 I1 @enF o1y o
cl+
2 c2 2 DSR 2
GND < ICS 100nF ur Ve . PRI _
CKSR Hj I*’”“F ., 3 o L Soonr - j RO | %
a
+V 100nF l e TS | &
*RESET 5 *RESET T sl ™ s o |2
TXSR 6 RDI RDI 11 |T1N >° T10UT| 14 RDO 6y TS %
7 ATIN 1@ [T2IN >° T20UT| 7 DSR DTR 7 oR | O
STATUS 8 ATIN e 12 {RIOUT ~RINY 13 ™! R 85 r |
SMODE® 9 330 : ﬂw . 9 R20UT , ~|R2IN| 8 DTR GND 9 oND
SMODE1 18 BATS4 232A __1ey
15=GND/16=+V
v
NOTES: UNLESS OTHERWISE SPECIFIED;
1. ALL RESISTOR VALUES ARE IN OHMS, 1/1@W, 5%
2. ALL CAPACITORS ARE 50VDC OR HIGHER.
3. THE ORIGINATION SOURCE OF A VOLTAGE IS REPRESENTED
BY (VCC), AND ALL REFERENCES TO THAT VOLTAGE
ARE REPRESENTED BY (V€C).
T
APPEND THE FOLLOWING DRAWING CONTENT: TITLE
DOCUMENTSWHEN CHANGING prawN BY: (INITIAL RELEASE)
THISDOCUMENT: KAH 15MAR99 @\IORLD
SCHEMATIC DIAGRAM
KAH 13AUG99 2900 SPAFFORD ST.
RABBIT SIB DAVIS, CA 95616
APPROVALS: INITIAL RELEASE 530 - 757 - 4616
PROJECT ENGINEER:
SIZE DWG NO.
ENGINEERING MANAGER: B @ 9 @ — @@ 8 5
SIGNATURES DATE SCALE NONE | RELEASE DATE | SHEET 1 OF 4

	About This Manual
	1. Introduction
	1.1 Kit Contents
	1.2 Documentation
	1.3 An Overview of Dynamic C for the Rabbit

	2. Detailed Installation Instructions
	2.1 Software Installation
	2.2 Getting Hooked Up
	2.2.1 Prototyping Board
	2.2.2 Jackrabbit Board

	2.3 Starting Dynamic C

	3. Sample Programs
	3.1 Running Sample Program DEMOJR1.C
	3.2 Single-Stepping
	3.2.1 Watch Expression
	3.2.2 Break Point
	3.2.3 Editing the Program
	3.2.4 Watching Variables Dynamically
	3.2.5 Summary of Features

	3.3 Cooperative Multitasking
	3.4 Advantages of Cooperative Multitasking

	4. Software Reference
	4.1 More About Dynamic C
	4.1.1 Operating System Framework

	4.2 I/O Drivers
	4.2.1 Initialization
	4.2.2 Digital Output
	void digOut(int channel, int value)
	void digOn(int channel)
	void digOff(int channel)

	4.2.3 Analog Output
	void anaOut(int channel, int value)

	4.2.4 Analog Input
	void anaIn(int channel, int *value)
	void cof_anaIn(int channel, int *value)

	4.3 Serial Communication Drivers
	4.3.1 Open and Close Functions
	int serXopen (long baud);
	int serXclose ();

	4.3.2 Non-Cofunction Blocking Input Functions
	int serXgetc ();
	int serXread (void *data, int length, unsigned long tmout);

	4.3.3 Non-Cofunction Blocking Output Functions
	int serXputc (char c);
	int serXputs (char *s);
	int serXwrite (void *data, int length);

	4.3.4 Single-User Cofunction Input Functions
	scofunc int cof_serXgetc ();
	scofunc int cof_serXgets(char *s, int length, unsigned long tmout);
	scofunc int cof_serXread(void *data, int length, unsigned long tmout);

	4.3.5 Single-User Cofunction Output Functions
	scofunc void cof_serXputc (char c);
	scofunc void cof_serXputs(char *s);
	scofunc void cof_serXwrite (void *data, int length);

	4.3.6 Circular Buffer Functions
	int serXpeek ();
	void serXrdFlush ();
	void serXwrFlush ();
	int serXrdFree ();
	int serXwrFree ();
	int serXrdUsed ();

	Appendix A. Specifications
	Schematics

