
An Introduction to TCP/IP
For Embedded System Designers

010207-E

An Introduction to TCP/IP
Part Number 019-0074 • 010131-E
Printed in U.S.A.

Copyright

© 2001 Z-World, Inc. • All rights reserved.

• The TCP/IP software used in the Rabbit 2000 TCP/IP Development Kit is designed for
use only with Rabbit Semiconductor chips, and is used under licence from Erick

Engelke.

Z-World, Inc. reserves the right to make changes and improvements to its products with-
out providing notice.

Trademarks

• Dynamic C® is a registered trademark of Z-World, Inc.

• Windows® is a registered trademark of Microsoft Corporation.

Notice to Users
When a system failure may cause serious consequences, protecting life and property

against such consequences with a backup system or safety device is essential. The buyer
agrees that protection against consequences resulting from system failure is the buyer’s

responsibility.

This device is not approved for life-support or medical systems.

All Z-World products are 100 percent functionally tested. Additional testing may include

visual quality control inspections or mechanical defects analyzer inspections. Specifica-
tions are based on characterization of tested sample units rather than testing over tempera-
ture and voltage of each unit. Rabbit Semiconductor may qualify components to operate

within a range of parameters that is different from the manufacturer’s recommended

range. This strategy is believed to be more economical and effective. Additional testing or
burn-in of an individual unit is available by special arrangement.

Company Address
Z-World, Inc.

2900 Spafford Street
Davis, California 95616-6800
USA

Telephone: (530) 757-3737
Facsimile: (530) 753-5141
Web site: http://www.zworld.com
ii

Table of Contents

1. Introduction...1

2. Ethernet Basics ...3
2.1 Ethernet Address ...3

2.2 Physical Connections ..3
2.2.1 Cables...3

2.3 Frames ...4
2.3.1 Collisions ..4

3. Networks ...5
3.1 LAN...5

3.1.1 Repeaters and Bridges ...5

3.2 WAN..5
3.2.1 Packet Switches ...6
3.2.2 Forwarding a Packet ..6

3.3 VPN...6

3.4 Network Devices ...7
3.4.1 Routers ...7
3.4.2 Firewalls...7
3.4.3 Gateways..7

3.5 Network Architecture..7
3.5.1 Client/Server Networks..8

3.5.1.1 Port Numbers ...8

4. Network Protocol Layers ..9
4.1 Layering Models ...9

4.2 TCP/IP Protocol Stack ..10

5. TCP/IP Protocols ..11
5.1 IP ...11

5.1.1 IP Address..12
5.1.2 IP Address Classes...12
5.1.3 Netmasks..12
5.1.4 Subnet Address ..12
5.1.5 Directed Broadcast Address...13
5.1.6 Limited Broadcast Address..13

5.2 IP Routing ...13

5.3 ARP ...14

5.4 The Transport Layer ..14
5.4.1 UDP ...14
5.4.2 TCP ..14

5.4.2.1 TCP Connection/Socket ..14
5.4.2.2 TCP Header ...15

5.4.3 ICMP..16

5.5 The Application Layer ..16
5.5.1 DNS ...16

5.5.1.1 DCRTCP.LIB Implementation of DNS ..17

6. Dynamic C TCP/IP Implementation...19
6.1 TCP/IP Configuration Macros ..19

6.1.1 IP Addresses Set Manually ..19
An Introduction to TCP/IP iii

6.1.2 IP Addresses Set Dynamically .. 19
6.1.3 Default Buffer Size.. 19
6.1.4 Delay a Connection ... 20
6.1.5 Runtime Configuration.. 20

6.2 Skeleton Program.. 21

6.3 TCP Socket ... 22
6.3.1 Passive Open ... 22

6.3.1.1 Example of Passive Open ... 23
6.3.2 Active Open... 23
6.3.3 TCP Socket Functions... 25

6.3.3.1 Control Commands ... 25
6.3.3.2 Status Commands ... 25
6.3.3.3 I/O Functions .. 26

6.4 UDP Interface ... 27
6.4.1 Opening and Closing... 27
6.4.2 Writing... 27
6.4.3 Reading.. 28
6.4.4 Checksums .. 28

6.5 Program Design .. 28
6.5.1 State-Based Program Design... 28
6.5.2 Blocking vs. Non-Blocking... 29
6.5.3 Blocking Macros ... 29

6.6 Multitasking and TCP/IP .. 30

7. Other References...31
 iv An Introduction to TCP/IP

1. Introduction
This manual is intended for embedded systems engineers and support professionals who are not
familiar with basic networking concepts. An overview of an Ethernet network and the TCP/IP

suite of protocols used to communicate across the network will be given.

The Rabbit Semiconductor TCP/IP Development Kit includes a TCP/IP development board with a

10Base-T Ethernet interface. The software that implements the TCP/IP suite of protocols is dis-
cussed in detail in the TCP/IP Function Reference Manual and the TCP/IP High-level Protocols

Manual.
An Introduction to TCP/IP 1

2 An Introduction to TCP/IP

0401 Tm
-0.006 Tc
[(2.)-8(2)-10(.)-8(1)]TJ
/T6 h18 0 TD
0.0049 Tc
[(Dat)8.2(a)]TJ
/T9 1 Tf
1.90149 TcF8 2/F5 1 Tf
0.2523 0 TD
0.0055 Tc
[(ne)9.9(twor-3827 0 T1(r)]TJ
/T9 1 T11 0 TD
ou
()Tj
/F5 1 Tf
0.2523407TD
0.0049 Tc
[(Dat)8.2(a)]TJ
 0 TD
-0.01 T172.0659 0Tf
(poD
0 Tc1 Tc
0()Tj
/F5 1 Tf
0.241835 TD
0.0058 Tc
[(exc)10.2(e)-0. 0 TD
-0.01 T743 0 TD
0 Tc
9(ere
/F5 1 Tf
0.2527 0 TD
0.0061 Tc
[(c)10.5(onne)10 0 TD
0.0f
1.2198 0 TD
0 Tc
()Tj
/F5 1 Tf
0.2527 0 TD
0.007 Tc
[(lo)12.5(cal)]TJ 0 TD
-0.
1.2308 0 TD
03.517
(oj
/F5 1 Tf
0.2525T11 D
0.0061 Tc
[(c)10.5(onne)10 0 TD
0.0/T9 1 Tf
2.6
[(21(yp)Tj
/F5 1 Tf
0.2521(.)TD
0.0061 Tc
[(c)10.5(onne)10 0 TD
0.0f
1.2Tc
()Tjf
/F5 1 Tf
0.252835 TD
0.0058 Tc
[(exc)10.2(e)-0. 0 TD
-0.01 T7
2.22 9.ab Tc
(lc
0(6)Tj1525(—cj1525(roTj1525(s)01 Tmv Tc
()Tj
/F5 1 Tf
0.27.384 TD
0.0062 Tc
[(ca)10.6(bl)9.5 0 TD
-0.01 T6 Tc
()nd2/F5 1 Tf
0.25245T1 D
0.0061 Tc
[(c)10.5(onne)10 0 TD
0.0/T9 f
2.22 9(2)-10(,)]T
(Tf
3.5ac
0(4(0 Tc
(gh
[(2.)-
[(2.)hroj1526)Th.)-8(1)]TJ
/T6 628 0 TD
0.0055 Tc
[(ha)9.9(ve)]TJ
 0 TD
-0.01 T7Tc
()In
/F5 1 Tf
0.252835 TD
0.0058 Tc
[(exc)10.2(e)-0. 0 TD
0.0/T9 1Tf
2.(most2/F5 1 Tf
0.252 0 TD
0.0055 Tc
[(ne)9.9(twor)8. 0 TD
0.0f
1.212.22 9in9 1 5(s,)]T528)n9 1 5(cTc
()TeTc
()Ts)014)Tj
/F5 1 Tf
0.241934 TD
0.0061 Tc
[(c)10.5(onne)10 0 TD
0.0f
1.208 0 TD
0 Tc
()Tj
/F5 1 Tf
0.2527 0 TD
-0.0033 Tc
[(s)-9.9(i)0)-8.829)-9.8(m)]TJ
/T9 1 Tf
2.51s 0 TD
,)]T
5 Tf
355ac
0(3(0 Tc5(gh
[(25)-
[(25)hroj1527)Th)-8(1)]TJ
/T6 624835TD
-0.0044 Tc
[(ca)-10.9(b)-9.9(l)-1.1(e)-10.9(s)-11(,)]TJ
/T9 1 Tf
2.7582 0 TD
0 Tc
/F5 1 Tf
0.2527T11 D
0.0061 Tc
[(c)10.5(onne)109(phone)]TJ
/T9 1 Tf
aTf
3)Tj
/F5 1 Tf
0.2527 0 TD
-0.0044 Tc
[(co)-9.9(r)-12.1(r)-1.1/T9 1 Tf
2.6us 0 TD
0d.
/F5 1 Tf
0.2527 98)TD
0.0061 Tc
[(c)10.5(onne)10
0.7802 0 TD
0 Tc
()It
/F5 1 Tf
0.252615 TD
0.0049 Tc
[(Dat)8.2(a)]TJ
0.7912 0 TD
0 Tc
()is
/F5 1 Tf
0.252681 TD
0.0055 Tc
[(ha)9.9(ve)]TJ

1.2308 0 TD
0 Tc
(2 0 ce
()sTj15
aTyj
/F5 1 Tf
0.2527 0 TD
0.0055 Tc
[(pl)8.8(ug)]TJ
/T9 1 Tf
1.79 Tc
()Tj
/F5 1 Tf
0.2527 0 TD
0.0065 Tc
[(te)10.9(le)10.9(phone)]TJ
/T Tc
(usj
/F5 1 Tf
0.2523407TD
0.0049 Tc
[(Dat)8.2(a)]TJ
9(phone)]5ac/F5 1 Tf
0.25245T TD
0.0c
[(ei)-12.7(gh)-10.5(t)]TJ
/T9 1 Tf
2.cr1 0 TD
oTc
()Ts)
0(6 Tc
(
(ojc
()Tvec
(
5)Tj
/F5 1 Tf
0.241857 TD
-0.005 Tc
[(ei)-12.7(gh)-10.5(t)]TJ
/T9 0.9(s)-11(,)]TJ
/T9 1 Tf
2.7582 0
/F5 1 Tf
0.2521(.)TD
0.0061 Tc
[(c)10.5(onne)109(phone)]TJ
/499(s)-1wh 0 T4(en0
/F5 1 Tf
0.25217 0TD
-0.0033 Tc
[(s)-9.9(i)0(m)-16.5(ila)-9.9(r)]TJ
/03.56
(oj
/F5 1 Tf
0.2525T11 D
0.0061 Tc
[(c)10.5(onne)109(phone)]TJ
/T Tc
(2 co)c
()m.56
(p)c
()ute
()Tj.7582s)-8(1)]TJ
/T6 h11860TD
-0.0033 Tc
[(s)-9.9(i)0(m)-18hone)]TJ
/T9 1 Tf
aTf
3)Tj
/F5 1 Tf
0.2527 0 TD
-0.0044 Tc
[(co)-9.9(r)-3829451T1(r)]TJ
/T9 1 T Tc
(2 c 0 T4(m
-0.0064Tc
0.0064Td)-8(1)]TJ
/T6 h1076)TD
0.0061 Tc
[(c)10.5(onne)109(phone)]TJ
/72.0659d)c
(TD
 Tc
(r.0063(ec
[0063(lyj
/F5 1 Tf
0.252/T9)TD
0.0061 Tc
[(c)10.5(onne)109(phone)]TJ
/11 0 TD
witTc
(hou
()tj
/F5 1 Tf
0.252/76)TD
0.0061 Tc
[(c)10.5(onne)109(phone)]5ac/F5 1 Tf
0.252439 TD
0.0c
[(ei)-12.7(gh)-10.5(t)]TJ1.9011 0 TD
0u
()bj
/F5 1 Tf
0.2525T11 D
0.0061 Tc
[(c)10.5(onne)109(TD
0.0f
1.208 0 TD
(fc
()oTc
()Tj
/F5 1 Tf
0.2525T11 D
0.0061 Tc
[(c)10.5(onne)109(phone)]TJ
/172.0659exj1522(amplf
(eTj
/F5 1 Tf
0.241T9) TD
0.0055 Tc
[(ha)9.9(ve)]TJ
/T.7802 0 TD
0 Tc
()if
/F5 1 Tf
0.252615 TD
0.0049 Tc
[(Dat)8.2(a)]TJ
0.7912 0 TD
0Tc
()Tyou
/F5 1 Tf
0.2525161 D
0.0061 Tc
[(c)10.5(onne)100.7912 0 TD
0TTf
2.(want2/F5 1 Tf
0.252 0 TD
0.0055 Tc
[(ne)9.9(twor)8./T.7802 0 TD
0 Tc
()Tj
/F5 1 Tf
0.2527 0 TD
0.0065 Tc
[(te)10.9(le)10.9(TD
0.0/T9 f
2.22 9coj1526
-0c)
()Tj
/F5 1 Tf
0.253.131)TD
0.0061 Tc
[(c)10.5(onne)100.7912 0 TD
0Tc
()Tyou 2/F5 1 Tf
0.25284 TD
0.0065 Tc
[(te)10.9(le)10.9(phone)]TJ
/399(s)-1PC’)6222(sj
/F5 1 Tf
0.2529 0 TD
0.0061 Tc
[(c)10.5(onne)100.5(t)]TJ1.9011 0 TD
EtTc
(he)1 Tfrne)1 Tfj
/F5 1 Tf
0.253.4/T TD
-0.005 Tc
[(ei)-12.7(gh)-10.5(t)]TJ
/T9 02.0659di)]T528 reTc
()TcTc
()Ttlyj
/F5 1 Tf
0.252/T9)TD
0.0061 Tc
[(c)10.5(onne)-8.89 Tc1(r)]TJ
/T9 TD
0 Tc
()Tj
/F5 1 Tf
0.2527 0 TD
0.0065 Tc
[(te)10.9(le)10.9(6.5(ila)-9.9(r)]TJ
/0 Tc
()Tj
/F5 1 Tf
0.2527 0 TD
-0.0044 Tc
[(co)-9.9(r)-12.1(r)-1.1/T9 4 Tc
(2 Raf
(bbi)7 Tfj
/F5 1 Tf
0.2522681 TD
0.0055 Tc
[(ha)9.9(ve)]TJ
9(phone)]TJ
/172.0659S0.006)m.57(TD
 99coj1522(nduc.006)tor)-8(1)]TJ
/T6 62087)TD
0.0061 Tc
[(c)10.5(onne)109(phone)]TJ
/1r)]TJ
/TCP/Tc
6(IPj
/F5 1 Tf
0.252/2 TD
0.0065 Tc
[(te)10.9(le)10.9(phone)]TJ
/499(s)-1De)1 3TvelTc
2(opmenj
/F5 1 Tf
0.255.417 TD
-0.005 Tc
[(ei)-12.7(gh)-10.5(t)]TJTJ
/4r)]TJ
/BoaTc
(r.-364Td.)j
/F5 1 Tf
0.252/4 TD
0.0049 Tc
[(Dat)8.2(a)]TJ
9(phone)]TJ
/3 Tc
((Somj
/F5 1 Tf
0.22r)]TJ
D
0.0065 Tc
[(te)10.9(le)10.9(TD
0.0/T9 Tc
()Thubs2/F5 1 Tf
0.252 0 TD
0.0061 Tc
[(c)10.5(onne)100.5(t)]TJ1.90 Tc
(2 hav)(
5)Tj
/F5 1 Tf
0.252 0 TD
0.0061 Tc
[(c)10.5(onne)100. TD
0.0/T9 Tc
()[(m

()Tj
/F5 1 Tf
0.25245T TD
0.0061 Tc
[(c)10.5(onne)100.5(t)]TJ1.9011 0 TD
iTc
(npuj
/F5 1 Tf
0.2522/T9)TD
0.0061 Tc
[(c)10.5(onne)109(7912 0 TD
0 1)]TJ
/0 Tc
(6(atj
/F5 1 Tf
0.2525T11 D
0.0061 Tc
[(c)10.5(onne)109(TD
0.0TJ
/T Tc
(11(n
/F5 1 Tf
0.2523 0 TD
0.0055 Tc
[(ne)9.9(twor-382054991(r)74J
/T9 1 T 1)]TJ
/a)
()Tcce)
()Tpj
/F5 1 Tf
0.252257 TD
0.0049 Tc
[(Dat)8.2(a)]TJ
9(phone)]
/T9 02.0659ei)]T528 0 Tc9
5)Tr
/F5 1 Tf
0.2522)]TJ
D
0.0065 Tc
[(te)10.9(le)10.9(phone)]5ac/F5 1 Tf
0.25245T5TD
0.0c
[(ei)-12.7(gh)-1
1.2308 0 TD
022.0659st)9
5)rai)9
5)ght)9
5)-t)9
5)hr)9
5)ough)-8(1)]TJ
/T6 624831 D
0.0061 Tc
[(c)10.5(onne)109(phone)]TJ
/1c
()Torc/F5 1 Tf
0.25284 TD
0.0065 Tc
[(te)10.9(le)10.
1.2308 0 TD
0 Tc
(2 cro)c
()sso)c
()vTr
/F5 1 Tf
0.2541857 TD
-0.005 Tc
[(ei)-12.7(gh)-10.5(t)]TJ TD
0 Tc
(2 ca
()bl 0
/F5 1 Tf
0.2521(.)TD
0.0061 Tc
[(c)10.5(onne)109(phone)]TJ
/5 Tc
(2 dep)(
)Tj-TJ
/ndiTc

/ng)-8(1)]TJ
/T6 h11970TD
-0.0033 Tc
[(s)-9.9(i)0(m)-18hone
2. Ethernet Basics
TCP/IP (Transmission Control Protocol/Internet Protocol) is a set of protocols independent of the

physical medium used to transmit data, but the Rabbit Semiconductor TCP/IP Development Board

uses an Ethernet interface to communicate with other computers. The Ethernet can use either a bus

or star topology. A bus topology attaches all devices in sequence on a single cable. In a star topol-
ogy all devices are wired directly to a central hub. 10Base-T uses a combination called a star-
shaped bus topology because while the attached devices can share all data coming in on the cable,
the actual wiring is in a star shape.

The access method used by the Ethernet is called Carrier Sense Multiple Access with Collision

Detect (CSMA/CD). This is a contention protocol, meaning it is a set of rules to follow when there

is competition for shared resources.

2.1 Ethernet Address
All Ethernet interfaces have a unique 48-bit address that is supplied by the manufacturer. It is

called the Ethernet address (also known as the MAC address, for Media Access Control). The

TCP/IP Development Board stores this value in Flash Memory (EEPROM) that is programmed

at the factory. If you need unique Ethernet addresses for some product you are making, you can

obtain them from the IEEE Registration Authority.

To read the MAC address of a TCP/IP Development Board, run the utility program

display_MAC.c. It is located on the Technical Support Sample Program Web page:
http://www.rabbitsemiconductor.com/support_center/rab20_support.html. It is also

included with Dynamic C, version 7.04 and above.

2.2 Physical Connections
The TCP/IP Development Board uses a Realtek RTL8019 10Base-T interface chip to provide a 10

Mbps Ethernet connection. This port can be connected directly to an Ethernet network.

By using hubs and routers, a network can include a large number of computers. A network might
include all the computers in a particular building. A local network can be connected to the Internet
by means of a gateway. The gateway is a computer that is connected both to the local network and

to the Internet. Data that must be sent out over the Internet are sent to the local network interface of
the gateway, and then the gateway sends them on to the Internet for routing to some other com-
puter in the world. Data coming in from the Internet are directed to the gateway, which then sends

them to the correct recipient on the local network.

2.2.1 Cables
Ethernet cables are similar to U.S. telephone plug cables, except they have eight connectorTf
2.22 9.
An Introduction to TCP/IP 3

http://www.rabbitsemiconductor.com/support_center/rab20_support.html
http://standards.ieee.org/regauth/

Figure 1. Ethernet Network

2.3 Frames
Bits flowing across the Ethernet are grouped into structures called frames. A frame must be

between 46 and 1500 bytes in size. An Ethernet frame has four parts:

1. A Preamble of 8 bytes that helps synchronize the circuitry, thus allowing small bit rate dif-
ferences between sender and receiver.

2. A Header of 14 bytes that contains a 6 byte destination address, 6 byte source address and a

2 byte type field.

3. A Data area of variable length that, along with the header, is passed to the IP layer (a.k.a. the

Network layer).

4. A Trailer of 4 bytes that contains a CRC to guard against corrupted frames.

If the destination address is all 1 bits, it defines a broadcast frame and all systems on the local net-
work process the frame. There are also multicast frames. A subset of systems can form a “multi-
cast” group that has an address that does not match any other system on the network. All systems

in a particular subset process a packet with a destination address that matches their subset. A sys-
tem can belong to any number of subsets.

A system may put its interface(s) into promiscuous mode and process all frames sent across its

Ethernet. This is known as "sniffing the ether." It is used for network debugging and spying.

2.3.1 Collisions
In a star-shaped bus topology, all systems have access to the network at any time. Before sending

data, a system must determine if the network is free or if it is already sending a frame. If a frame is

already being sent, a system will wait. Two systems can “listen” on the network and “hear” silence

and then proceed to send data at the same time. This is called a collision. Ethernet hardware has

collision detection sensors to take care of this problem. This is the Collision Detect (CD) part of
CSMA/CD. The colliding data is ignored, and the systems involved will wait a random amount of
time before resending their data.

HUB

Local Network Computers

Gateway
To Internet

Ethernet
cables
4 An Introduction to TCP/IP

3. Networks
A network is a system of hardware and software, put together for the purpose of communication

and resource sharing. A network includes transmission hardware, devices to interconnect transmis-
sion media and to control transmissions, and software to decode and format data, as well as to

detect and correct problems.

There are several types of networks in use today. This chapter will focus on three of them:

• LAN - Local Area Network

• WAN - Wide Area Network

• VPN - Virtual Private Network

3.1 LAN
The most widely deployed type of network, LANs were designed as an alternative to the more

expensive point-to-point connection. A LAN has high throughput for relatively low cost. LANs

often rely on shared media, usually a cable, for connecting many computers. This reduces cost.
The computers take turns using the cable to send data.

3.1.1 Repeaters and Bridges
LANs typically connect computers located in close physical proximity, i.e., all the computers in a

building. Repeaters are used to join network segments when the distance spanned causes electrical
signals to weaken. Repeaters are basically amplifiers that work at the bit level; they do not actively

modify data that is amplified and sent to the next segment.

Like repeaters, bridges are used to connect two LANs together. Unlike repeaters, bridges work at
the frame level. This is useful, allowing bridges to detect and discard corrupted frames. They can

also perform frame filtering, only forwarding a frame when necessary. Both of these capabilities

decrease network congestion.

Bridged LANs can span arbitrary distances when using a satellite channel for the bridge. The

resulting network is still considered a LAN and not a WAN.

3.2 WAN
To be considered a WAN, a network must be able to connect an arbitrary number of sites across an

arbitrary distance, with an arbitrary number of computers at each site. In addition, it must have rea-
sonable performance (no long delays) and allow all of the computers connected to it to communi-
cate simultaneously. This is accomplished with packet switches.
An Introduction to TCP/IP 5

Figure 2. WAN with 4 switches.

3.2.1 Packet Switches
Packet switches are small computers with CPUs, memory and I/O devices. They move complete

packets, using a technique called Store and Forward. An incoming packet is stored in a memory

buffer and the CPU is interrupted. The processor examines the packet and forwards it to the appro-
priate place. This strategy allows the switch to accept multiple packets simultaneously.

As the figure above illustrates, WANs currently do not need to be symmetric.

3.2.2 Forwarding a Packet
A data structure contains the information that tells the switch where to send the packet next. This is

called a routing table. The destination address in the packet header determines the routing table

entry that is used to forward the packet. It could be forwarded to a computer attached to the switch

that is examining the packet or it could be to another switch in the WAN.

3.3 VPN
VPNs are built on top of a publicly-accessible infrastructure, such as the Internet or the public tele-
phone network. They use some form of encryption and have strong user authentication. Essentially

a VPN is a form of WAN; the difference is their ability to use public networks rather than private

leased lines. A VPN supports the same intranet services as a traditional WAN, but also supports

remote access service. This is good for telecommuting, as leased lines don’t usually extend to pri-
vate homes and travel destinations.

A remote VPN user can connect via an Internet Service Provider (ISP) in the usual way. This elim-
inates long-distance charges. The user can then initiate a tunnel request to the destination server.
The server authenticates the user and creates the other end of the tunnel. VPN software encrypts

the data, packages it in an IP packet (for compatibility with the Internet) and sends it through the

tunnel, where it is decrypted at the other end.

������
������	�

������
������	��

������
������	��

���	�����

�������		�

�����	�

������
������	��
6 An Introduction to TCP/IP

There are several tunneling protocols available: IP security (IPsec), Point-to-Point Tunneling Pro-
tocol (PPTP) and Layer 2 Tunneling Protocol (L2TP).

3.4 Network Devices
Some network devices (repeaters, bridges and switches) were discussed in the previous sections.
These are all dedicated hardware devices. Network devices can also be non-dedicated systems run-
ning network software.

3.4.1 Routers
A router is a hardware device that connects two or more networks. Routers are the primary back-
bone device of the Internet, connecting different network technologies into a seamless whole. Each

router is assigned two or more IP addresses because each IP address contains a prefix that specifies

a physical network.

Before a packet is passed to the routing software, it is examined. If it is corrupted, it is discarded. If
it is not corrupted, a routing table is consulted to determine where to send it next. By default, rout-
ers do not propagate broadcast packets (see “Directed Broadcast Address” on page 13). A router
can be configured to pass certain types of broadcasts.

3.4.2 Firewalls
A firewall is a computer, router, or some other communications device that controls data flow

between networks. Generally, a firewall is a first-line defense against attacks from the outside

world. A firewall can be hardware-based or software-based. A hardware-based firewall is a special
router with additional filter and management capabilities. A software-based firewall runs on top of
the operating system and turns a PC into a firewall.

Conceptually, firewalls can be categorized as Network layer (aka Data Link layer) or Application

layer. Network layer firewalls tend to be very fast. They control traffic based on the source and

destination addresses and port numbers, using this information to decide whether to pass the data

on or discard it.

Application layer firewalls do not allow traffic to flow directly between networks. They are typi-
cally hosts running proxy servers. Proxy servers can implement protocol specific security because

they understand the application protocol being used. For instance, an application layer firewall can

be configured to allow only e-mail into and out of the local network it protects.

3.4.3 Gateways
A gateway performs routing functions. The term default gateway is used to identify the router that
connects a LAN to an internet. A gateway can do more than a router; it also performs protocol con-
versions from one network to another.

3.5 Network Architecture
There are two network architectures widely used today: peer-to-peer and client/server. In peer-to-
peer networks each workstation has the same capabilities and responsibilities. These networks are

usually less expensive and simpler to design than client/server networks, but they do not offer the

same performance with heavy traffic.
An Introduction to TCP/IP 7

3.5.1 Client/Server Networks
The client/server paradigm requires some computers to be dedicated to serving other computers. A

server application waits for a client application to initiate contact.

3.5.1.1 Port Numbers
Port numbers are the mechanism for identifying particular client and server applications. Servers

select a port to wait for a connection. Most services have well-known port numbers. For example,
HTTP uses port 80. When a web browser (the client) requests a web page it specifies port 80 when

contacting the server. Clients usually have ephemeral port numbers since they exist only as long as

the session lasts.

Some of the common well-known TCP port numbers are listed in the table below.

Table 1. Summary of Differences between Client and Server Software

Client Software Server Software

An arbitrary application program that becomes a

client when a remote service is desired. It also

performs other local computations.

A special-purpose, privileged program dedicated to

providing one service. It can handle multiple remote

clients at the same time.

Actively initiates contact. Passively waits for contact.

Invoked by a user and executes for one session.
Invoked when the system boots and executes

through many sessions.

Capable of accessing multiple services as needed,
but actively contacts only one remote server at a

time.

Accepts contact from an arbitrary number of clients,
but offers a single service or a fixed set of services.

Does not require special hardware or a sophisticated

operating system.

Can require powerful hardware and a sophisticated

operating system, depending on how many clients

are being served.

Port
Number

Listening Application

7 Echo request

20/21 File Transfer Protocol (FTP)

23 Telnet

25 Simple Mail Transfer Protocol (SMTP)

53 Domain Name Server
8 An Introduction to TCP/IP

4. Network Protocol Layers
Computers on a network communicate in agreed upon ways called protocols. The complexity of
networking protocol software calls for the problem to be divided into smaller pieces. A layering

model aids this division and provides the conceptual basis for understanding how software proto-
cols together with hardware devices provide a powerful communication system.

4.1 Layering Models
In the early days of networking, before the rise of the ubiquitous Internet, the International Organi-
zation for Standardization (ISO) developed a layering model whose terminology persists today.

The 7-layer model has been revised to the 5-layer TCP/IP reference model to meet the current
needs of protocol designers.

Table 2. ISO 7-Layer Reference Model

Name of Layer Purpose of Layer

Layer 7 Application Specifies how a particular application uses a network.

Layer 6 Presentation Specifies how to represent data.

Layer 5 Session
Specifies how to establish communication with a remote

system.

Layer 4 Transport Specifies how to reliably handle data transfer.

Layer 3 Network
Specifies addressing assignments and how packets are

forwarded.

Layer 2 Data Link
Specifies the organization of data into frames and how to

send frames over a network.

Layer 1 Physical Specifies the basic network hardware.

Table 3. TCP/IP 5-Layer Reference Model

Name of Layer Purpose of Layer

Layer 5 Application Specifies how a particular application uses a network.

Layer 4 Transport Specifies how to ensure reliable transport of data.

Layer 3 Internet Specifies packet format and routing.

Layer 2 Network Specifies frame organization and transmittal.

Layer 1 Physical Specifies the basic network hardware.
An Introduction to TCP/IP 9

4.2 TCP/IP Protocol Stack
TCP/IP is the protocol suite upon which all Internet communication is based. Different vendors

have developed other networking protocols, but even most network operating systems with their
own protocols, such as Netware, support TCP/IP. It has become the de facto standard.

Protocols are sometimes referred to as protocol stacks or protocol suites. A protocol stack is an

appropriate term because it indicates the layered approach used to design the networking software

Figure 3. Flow of data between two computers using TCP/IP stacks.

Each host or router in the internet must run a protocol stack. The details of the underlying physical
connections are hidden by the software. The sending software at each layer communicates with the

corresponding layer at the receiving side through information stored in headers. Each layer adds its

header to the front of the message from the next higher layer. The header is removed by the corre-
sponding layer on the receiving side.

�������	 �������	

����������� �����������

��������� ���������

�	����� �	�����

����� ��� ����� ���

!������

���	�����

"�#������
���	�����

$�	�������%	����	

$�	�������%	����	

$�	�������%	����	

$�	�������%	����	

�	��	� &	�	�'	�
10 An Introduction to TCP/IP

5. TCP/IP Protocols
This chapter discusses the protocols available in the TCP/IP protocol suite. The following figure

shows how they correspond to the 5-layer TCP/IP Reference Model. This is not a perfect one-to-
one correspondence; for instance, Internet Protocol (IP) uses the Address Resolution Protocol
(ARP), but is shown here at the same layer in the stack.

Figure 4. TCP/IP Protocol Flow

5.1 IP
IP provides communication between hosts on different kinds of networks (i.e., different data-link

implementations such as Ethenet and Token Ring). It is a connectionless, unreliable packet deliv-
ery service. Connectionless means that there is no handshaking, each packet is independent of any

other packet. It is unreliable because there is no guarantee that a packet gets delivered; higher-level
protocols must deal with that.

��������

��	
	

��	
�	
��	

���	

���	

��	

���

���	

����	
���	

	
��

���������

�������

���������

��� �!�����
An Introduction to TCP/IP 11

5.1.1 IP Address
IP defines an addressing scheme that is independent of the underlying physical address (e.g, 48-bit
MAC address). IP specifies a unique 32-bit number for each host on a network. This number is

known as the Internet Protocol Address, the IP Address or the Internet Address. These terms are

interchangeable. Each packet sent across the internet contains the IP address of the source of the

packet and the IP address of its destination.

For routing efficiency, the IP address is considered in two parts: the prefix which identifies the

physical network, and the suffix which identifies a computer on the network. A unique prefix is

needed for each network in an internet. For the global Internet, network numbers are obtained from

Internet Service Providers (ISPs). ISPs coordinate with a central organization called the Internet
Assigned Number Authority.

5.1.2 IP Address Classes
The first four bits of an IP address determine the class of the network. The class specifies how

many of the remaining bits belong to the prefix (aka Network ID) and to the suffix (aka Host ID).
The first three classes, A, B and C, are the primary network classes.

When interacting with mere humans, software uses dotted decimal notation; each 8 bits is treated

as an unsigned binary integer separated by periods. IP reserves host address 0 to denote a network.
140.211.0.0 denotes the network that was assigned the class B prefix 140.211.

5.1.3 Netmasks
Netmasks are used to identify which part of the address is the Network ID and which part is the

Host ID. This is done by a logical bitwise-AND of the IP address and the netmask. For class A net-
works the netmask is always 255.0.0.0; for class B networks it is 255.255.0.0 and for class C net-
works the netmask is 255.255.255.0.

5.1.4 Subnet Address
All hosts are required to support subnet addressing. While the IP address classes are the conven-
tion, IP addresses are typically subnetted to smaller address sets that do not match the class system.
The suffix bits are divided into a subnet ID and a host ID. This makes sense for class A and B net-
works, since no one attaches as many hosts to these networks as is allowed. Whether to subnet and

how many bits to use for the subnet ID is determined by the local network administrator of each

network.

CLASS FIRST 4 BITS
NUMBER OF

PREFIX BITS
MAX # OF

NETWORKS
NUMBER OF

SUFFIX BITS

MAX # OF

HOSTS PER

NETWORK

A 0xxx 7 128 24 16,777,216

B 10xx 14 16,384 16 65,536

C 110x 21 2,097,152 8 256

D 1110 Multicast

E 1111 Reserved for future use.
12 An Introduction to TCP/IP

If subnetting is used, then the netmask will have to reflect this fact. On a class B network with sub-
netting, the netmask would not be 255.255.0.0. The bits of the Host ID that were used for the sub-
net would need to be set in the netmask.

5.1.5 Directed Broadcast Address
IP defines a directed broadcast address for each physical network as all ones in the host ID part of
the address. The network ID and the subnet ID must be valid network and subnet values. When a

packet is sent to a network’s broadcast address, a single copy travels to the network, and then the

packet is sent to every host on that network or subnetwork.

5.1.6 Limited Broadcast Address
If the IP address is all ones (255.255.255.255), this is a limited broadcast address; the packet is

addressed to all hosts on the current (sub)network. A router will not forward this type of broadcast
to other (sub)networks.

5.2 IP Routing
Each IP datagram travels from its source to its destination by means of routers. All hosts and rout-
ers on an internet contain IP protocol software and use a routing table to determine where to send a

packet next. The destination IP address in the IP header contains the ultimate destination of the IP

datagram, but it might go through several other IP addresses (routers) before reaching that destina-
tion.

Routing table entries are created when TCP/IP initializes. The entries can be updated manually by

a network administrator or automatically by employing a routing protocol such as Routing Infor-
mation Protocol (RIP). Routing table entries provide needed information to each local host regard-
ing how to communicate with remote networks and hosts.

When IP receives a packet from a higher-level protocol, like TCP or UDP, the routing table is

searched for the route that is the closest match to the destination IP address. The most specific to

the least specific route is in the following order:

• A route that matches the destination IP address (host route).

• A route that matches the network ID of the destination IP address (network route).

• The default route.

If a matching route is not found, IP discards the datagram.

IP provides several other services:

• Fragmentation. IP packets be divided into smaller packets. This permits a large

packet to travel across a network which only accepts smaller packets. IP fragments and

reassembles packets transparent to the higher layers.

• Timeouts. Each IP packet has a Time To Live (TTL) field, that is decremented every time

a packet moves through a router. If TTL reaches zero, the packet is discarded.

• Options. IP allows a packet's sender to set requirements on the path the packet takes

through the network (source route); the route taken by a packet may be traced (record

route), and packets may be labeled with security features.
An Introduction to TCP/IP 13

5.3 ARP
The Address Resolution Protocol is used to translate virtual addresses to physical ones. The net-
work hardware does not understand the software-maintained IP addresses. IP uses ARP to trans-
late the 32-bit IP address to a physical address that matches the addressing scheme of the

underlying hardware (for Ethernet, the 48-bit MAC address).

There are three general addressing strategies:

1. Table lookup

2. Translation performed by a mathematical function

3. Message exchange

TCP/IP can use any of the three. ARP employs the third strategy, message exchange. ARP defines

a request and a response. A request message is placed in a hardware frame (e.g., an Ethernet
frame), and broadcast to all computers on the network. Only the computer whose IP address

matches the request sends a response.

5.4 The Transport Layer
There are two primary transport layer protocols: Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP). They provide end-to-end communication services for applications.

5.4.1 UDP
This is a minimal service over IP, adding only optional checksumming of data and multiplexing by

port number. UDP is often used by applications that need multicast or broadcast delivery, services

not offered by TCP. Like IP, UDP is connectionless and works with datagrams.

5.4.2 TCP
TCP is a connection-oriented transport service; it provides end-to-end reliability, resequencing,
and flow control. TCP enables two hosts to establish a connection and exchange streams of data,
which are treated in bytes. The delivery of data in the proper order is guaranteed.

TCP can detect errors or lost data and can trigger retransmission until the data is received, com-
plete and without errors.

5.4.2.1 TCP Connection/Socket

A TCP connection is done with a 3-way handshake between a client and a server. The following is

a simplified explanation of this process.

1. The client asks for a connection by sending a TCP segment with the SYN control bit set.

2. The server responds with its own SYN segment that includes identifying information that
was sent by the client in the initial SYN segment.

3. The client acknowledges the server’s SYN segment.

The connection is then
14 An Introduction to TCP/IP

5.4.2.2 TCP Header

Every TCP segment has a header. The header comprises all necessary information for reliable,
complete delivery of data. Among other things, such as IP addresses, the header contains the fol-
lowing fields:

Sequence Number - This 32-bit number contains either the sequence number of the first byte

of data in this particular segment or the Initial Sequence Number (ISN) that identifies the first
byte of data that will be sent for this particular connection.

The ISN is sent during the connection setup phase by setting the SYN control bit. An ISN is

chosen by both client and server. The first byte of data sent by either side will be identified by

the sequence number ISN + 1 because the SYN control bit consumes a sequence number. The

following figure illustrates the three-way handshake.

Figure 5. Synchronizing Sequence Numbers for TCP Connection

The sequence number is used to ensure the data is reassembled in the proper order before being

passed to an application protocol.

Acknowledgement Number - This 32-bit number is the other host’s sequence number + 1 of
the last successfully received byte of data. It is the sequence number of the next expected byte

of data. This field is only valid when the ACK control bit is set. Since sending an ACK costs

nothing, (because it and the Acknowledgement Number field are part of the header) the ACK

control bit is always set after a connection has been established.

The Acknowledgement Number ensures that the TCP segment arrived at its destination.

�"����#$���
��������������
��%�&����'%(

�"�)��'���#$���
��������������
��%�&����'%�*+

��'���#$���
��������������,�-�%�*+&����'%�*+

������
.� ����/

������
.���0��/
An Introduction to TCP/IP 15

Control Bits - This 6-bit field comprises the following 1-bit flags
16 An Introduction to TCP/IP

5.5.1.1 DCRTCP.LIB Implementation of DNS

The resolve function in DCRTCP.LIB immediately converts a dotted decimal IP address to its

corresponding binary IP address and returns this value.

If resolve is passed a domain name, a series of queries take place between the computer that
called resolve and computers running name server software. For example, to resolve the

domain name www.rabbitsemiconductor.com, the following code (available in SAM-
PLES\TCP\DNS.C) can be used.

Your local name server is specified by the configuration macro MY_NAMESERVER. Chances are

that your local name server does not have the requested information, so it queries the root server.
The root server will not know the IP address either, but it will know where to find the name server
that contains authoritative information for the .com zone. This information is returned to your local
name server, which then sends a query to the name server for the .com zone. Again, this name

server does not know the requested IP address, but does know the local name server that handles

rabbitsemiconductor.com. This information is sent back to your local name server, who sends a

final query to the local name server of rabbitsemiconductor.com. This local name server returns

the requested IP address of www.rabbitsemiconductor.com to your local name server, who then

passes it to your computer.

#define MY_IP_ADDRESS "10.10.6.101"
#define MY_NETMASK "255.255.255.0"
#define MY_GATEWAY "10.10.6.19"
#define MY_NAMESERVER "209.233.102.12"

#memmap xmem
#use dcrtcp.lib

main() {
longword ip;
char buffer[20];

sock_init();

ip=resolve("www.rabbitsemiconductor.com");
if(ip==0)

printf("couldn’t find www.rabbitsemiconductor.com\n");
else

printf("%s is www.rabbitsemiconductors address.\n”,
inet_ntoa(buffer,ip));

}

An Introduction to TCP/IP 17

18 An Introduction to TCP/IP

6. Dynamic C TCP/IP Implementation
The Dynamic C TCP/IP protocol suite is contained in a number of Dynamic C libraries. The main

library file is DCRTCP.LIB. IP version 4 is supported, not version 6. This chapter will describe

the configuration macros and the functions used to initialize and drive TCP/IP.

Physical Connections
The TCP/IP Development Board can be connected to your computer using a hub and standard

cable or directly to the computer using a cross-over cable. The Development Board can also be a

host connected directly to an Ethernet network. For details on the physical connections, please

refer to the TCP/IP Getting Started Manual.

6.1 TCP/IP Configuration Macros
TCP/IP can be configured by defining configuration macros at compile time, by using the

tcp_config function (and other functions) at runtime or by using the Dynamic Host Configura-
tion Protocol (DHCP). Some ISPs require that the user provide them with a MAC address from the

controller. Run the utility program, display_mac.c to display the MAC address.

6.1.1 IP Addresses Set Manually
Four pieces of information are needed by any host on a network:

1. The IP address of the host (e.g., the TCP/IP Development Board).

2. The part of the IP address that distinguishes machines on the host’s network from machines

on other networks (the netmask).

3. The IP address of the router that connects the host’s network to the rest of the world (the

default gateway).

4. The IP address of the local DNS server for the host’s network. This is only necessary if DNS

backups are needed.

MY_IP_ADDRESS, MY_NETMASK, MY_GATEWAY and MY_NAMESERVER respectively corre-
spond to these four critical addresses.

6.1.2 IP Addresses Set Dynamically
The macro USE_DHCP enables Setenab
An Introduction to TCP/IP 19

In Dynamic C versions 6.56 and earlier, tcp_MaxBufSize determines the size of the input and

output buffers for TCP/IP sockets. The sizeof(tcp_Socket) will be about 200 bytes more

than double tcp_MaxBufSize. The optimum value for local Ethernet connections is greater
than the Maximum Segment Size (MSS). The MSS is 1460 bytes. You may want to lower
tcp_MaxBufSize, which defaults to 2048 bytes, to reduce RAM usage. It can be reduced to as

little as 600 bytes.

tcp_MaxBufSize will work slightly differently in Dynamic C versions 6.57 and higher. In

these later versions the buffer for the UDP socket will be tcp_MaxBufSize * 2, which is

twice as large as before.

6.1.4 Delay a Connection
Sometimes it is appropriate to accept a connection request when the resources to do so are not
available. This happens with web servers when web pages have several graphic images, each

requiring a separate socket.

The macro USE_RESERVEPORTS is defined by default. It allows the use of the function

tcp_reserveport(port number). When a connection to the port specified in

tcp_reserveport is attempted, the 3-way handshaking is done even if there is not yet a socket
available. This is done by setting the window parameter in the TCP header to zero, meaning, “I can

take 0 bytes of data at this time.” The other side of the connection will wait until the value in the

window parameter indicates that data can be sent.

When using tcp_reserveport, the 2MSL (for Maximum Segment Lifetime) waiting period

for closing a socket is avoided.

Using the companion function, tcp_clearreserve(port number), causes the connection

to the port to be done in the conventional way.

6.1.5 Runtime Configuration
Functions are provided to change configuration values at runtime. The most general one is

tcp_config. It takes two strings. The first string is the setting to be changed and the second

string is the value to change it to. The configuration macros MY_IP_ADDRESS, MY_NETMASK,
MY_GATEWAY, and MY_NAMESERVER can all be overridden by this function.

tcp_config("MY_IP_ADDRESS","10.10.6.101");

Some of the tcp_config functionality is duplicated by other Dynamic C TCP/IP functions.
tcp_config can override the macro MY_IP_ADDRESS, and so can the sethostid function.
20 An Introduction to TCP/IP

6.2 Skeleton Program
The following program is a general outline for a Dynamic C TCP/IP program. The first couple of
defines set up the default IP configuration information. The “memmap” line causes the program to

compile as much code as it can in the extended code window. The “use” line causes the compiler
to compile in the Dynamic C TCP/IP code using the configuration data provided above it.

#define MY_IP_ADDRESS "10.10.6.101"
#define MY_NETMASK "255.255.255.0"
#define MY_GATEWAY "10.10.6.19"
#memmap xmem
#use dcrtcp.lib

main() {
sock_init();
for (;;) {

tcp_tick(NULL);
}

}

To run this program, start Dynamic C and open the SAMPLES\TCPIP\PINGME.C file. Edit the

MY_IP_ADDRESS, MY_NETMASK, and MY_GATEWAY macros to reflect the appropriate values

for your device. Run the program and try to run ping 10.10.6.101 from a command line on

a computer on the same physical network, replacing 10.10.6.101 with your value for
MY_IP_ADDRESS.

The main() function first initializes the DCRTCP.LIB TCP/IP stack with a call to sock_init.
This call initializes internal data structures and enables the Ethernet chip, which will take a couple

of seconds with the RealTek chip. At this point, DCRTCP.LIB is ready to handle incoming pack-
ets.

DCRTCP.LIB processes incoming packets only when tcp_tick is called. Internally, the func-
tions tcp_open, udp_open, sock_read, sock_write, sock_close, and sock_abort

all call tcp_tick. It is a good practice to make sure that tcp_tick is called periodically in

your program to insure that the system has had a chance to process packets.

When you ping your device, the Ethernet chip temporarily stores the packet, waiting for
DCRTCP.LIB to process it. DCRTCP.LIB removes the packet the next time tcp_tick gets

called, and responds appropriately.

A rule of thumb is to call tcp_tick around 10 times per second, although slower or faster call
rates should also work. The Ethernet interface chip has a large buffer memory, and TCP/IP is

adaptive to the data rates that both end of the connection can handle; thus the system will generally

keep working over a wide variety of tick rates.

A more difficult question is how much computing time is consumed by each call to tcp_tick.
Rough numbers are less than a millisecond if there is nothing to do, 10s of milliseconds for typical
packet processing, and 100s of milliseconds under exceptional circumstances.
An Introduction to TCP/IP 21

6.3 TCP Socket
For Dynamic C version 6.57 and above, each socket must have an associated tcp_Socket of
145 bytes or a udp_Socket of 62 bytes. The I/O buffers are in extended memory.

For earlier versions of Dynamic C, each socket must have a tcp_Socket data structure that
holds the socket state and I/O buffers. These structures are, by default, around 4200 bytes each.
The majority of this space is used by the input and output buffers.

There are two ways to open a TCP socket: passive or active.

6.3.1 Passive Open
To wait for someone to contact your device, open a socket with tcp_listen. This type of open

is commonly used for Internet servers that listen on a well-known port, like 80 for HTTP. You sup-
ply tcp_listen with a pointer to a tcp_Socket data structure, the local port number others

will be contacting on your device, and the IP address and port number that are valid for the device.
If you want to be able to accept connections from any IP address or any port number, set one or
both to zero.

To handle multiple simultaneous connections, each new connection will require its own

tcp_Socket and a separate call to tcp_listen, but using the same local port number
(lport value.)

The tcp_listen call will immediately return, and you must poll for the incoming connection.
You can use the sock_wait_established macro, which will call tcp_tick and block

until the connection is established or you can manually poll the socket using

sock_established.
22 An Introduction to TCP/IP

6.3.1.1 Example of Passive Open

The following example waits for a connection on port 7, and echoes back each line as you enter it.
To test this program, change the configuration information and start it running. From a connected

PC, TELNET to the device port 7.

#define MY_IP_ADDRESS "10.10.6.101"
#define MY_NETMASK "255.255.255.0"
#define MY_GATEWAY "10.10.6.19"

#memmap xmem
#use "dcrtcp.lib"

#define PORT 7

tcp_Socket echosock;

main() {
char buffer[2048];
int status;

sock_init();

while(1) {
tcp_listen(&echosock,PORT,0,0,NULL,0);
sock_wait_established(&echosock,0,NULL,&status);

printf("Receiving incoming connection\n");
sock_mode(&echosock,TCP_MODE_ASCII);

while(tcp_tick(&echosock)) {
sock_wait_input(&echosock,0,NULL,&status);
if(sock_gets(&echosock,buffer,2048))
sock_puts(&echosock,buffer);

}

sock_err:
switch(status) {

case 1: /* foreign host closed */
printf("User closed session\n");
break;

case -1: /* timeout */
printf("\nConnection timed out\n");
break;

}
}

}

6.3.2 Active Open
When your Web browser retrieves a page, it is actively opening one or more connections to the

Web server’s passively opened sockets. To actively open a connection, you use the tcp_open

call, which uses parameters that are similar to the tcp_listen call. It is necessary to supply

exact parameters for ina and port, but the lport parameter can be zero, which tells

DCRTCP.LIB to select an unused port between 1024 and 65536.
An Introduction to TCP/IP 23

When you call tcp_open, Dynamic C tries to contact the other device to establish the connec-
tion. The tcp_open function will fail and return a zero if the connection could not be opened due

to routing difficulties, such as an inability to resolve the remote computer’s hardware address with

ARP.

#define MY_IP_ADDRESS "10.10.6.101"
#define MY_NETMASK "255.255.255.0"
#define MY_GATEWAY "10.10.6.19"
#define MY_NAMESERVER "209.233.102.12"

#define WEBSITE "www.zweng.com"
#define FILE "/"
#define PORT 80

#memmap xmem
#use "dcrtcp.lib"

main() {
int status;
tcp_Socket s;
char buffer[2048];
longword ip;

sock_init();

ip=resolve(WEBSITE);
tcp_open(&s,0,ip,PORT,NULL);
sock_wait_established(&s,0,NULL,&status);

sock_mode(&s,TCP_MODE_ASCII);

sprintf(buffer,"GET %s\r\n",FILE);
sock_puts(&s,buffer);

while(tcp_tick(&s)) {
sock_wait_input(&s,0,NULL,&status);
if(sock_gets(&s,buffer,2048))
printf("%s\n",buffer);

}

return 0;

sock_err:
switch(status) {

case 1: /* foreign host closed */
printf("User closed session\n");
break;

case -1: /* timeout */
printf("\nConnection timed out\n");
break;

}
}

24 An Introduction to TCP/IP

6.3.3 TCP Socket Functions
There are many functions that can be applied to an open TCP socket. They fall into three main cat-
egories: control, status, and I/O. Each function is explained in the TCP/IP Function Reference

Manual.

6.3.3.1 Control Commands

tcp_open
sock_close
sock_abort
sock_flush
sock_flushnext

The tcp_open and tcp_listen commands have already been explained in the active and pas-
sive sections. The sock_close command should be called when you want to end a connection.

The sock_close command may not immediately close the connection because it may take some

time to send the request to end the connection and receive the acknowledgements. If you want to

be sure that the connection is completely closed before continuing your program, you can call
tcp_tick with the socket’s address. When tcp_tick returns zero, then the socket is com-
pletely closed. Please note that if there is data left to be read on the socket, the socket will not
completely close.

There may be some reason that you want to cancel an open connection. In this case, you can call
sock_abort. This function will cause a TCP reset to be sent to the other end, and other future

packets sent on this connection will be ignored.

For performance reasons, data may not be immediately sent from a socket to its destination. If your
application requires the data to be sent immediately, you can call the sock_flush command.
This function will cause DCRTCP.LIB to try sending any pending data immediately. If you know

ahead of time that data will need to be sent immediately, call the sock_flushnext function on

the socket. This function will cause the next set of data written to the socket to be sent immedi-
ately, and is more efficient than sock_flush.

6.3.3.2 Status Commands

tcp_tick
sock_tbsize
sock_rbsize
sock_tbused
sock_rbused
sock_tbleft
sock_rbleft
sock_bytesready
sock_established

When you supply tcp_tick with a pointer to a TCP socket, it will first process the packets and

then check to see if the socket has an established connection. It returns a zero if the socket is no
An Introduction to TCP/IP 25

(r)]TJ
/T6)]TJ
T9 ha1 1(t5145 0 TD
0 Tc
()6.5714 0 TD
0 Tc
()Tj
/F5 1 Tf
0.9(r)]TJ
/T9 1 Tf)]Ti Tf
9th5145 0 TD
0 Tc
()Tj
/F5 1 Tf
0.2527 0 TD
0.0058 Tc
[(bi)9.4506 0 TD
()Tj
/F551 Tf
0.2198 0 TD
0.0063 c
[(be)11.4(fo2)-11.4(liTJ
/T1.3956 0 TD
0 Tc
(/F5 1 Tf
0 Tf
0.2527 0 TD
-0.0033 Tc
(in)Tj
/T9 1 Tf
0.7795 0 TD
0 Tc
()Tj
/F5 1 Tf
0.2527 0 TD
0.0044 Tc
[(sock_g)11(ets)]TJ
/FT9 1 27 0 TD
-0.0
(.39j
/F8 1 Tf
9 0 0 9 TD
0 Tc
(34189(r)]T39.3297 -1.2747 TJ
/37
/F6)Tj
ock_g)13k)0.8(eW)]TJ3T9 1 496 0 TD
0 Tc
()Tj
/F5 1 Tf
0.2527 0 TD
0.007 Tc
[(be)11.4506 0 TD
()Tj
/F551 Tf
0.2198 0 TD
0.0063 c
[(be)11-_g)11(ets)(et) in
longer open because of an error condition or if the socket has been closed. You can use this func-
tionality after calling sock_close on the socket to determine whether the socket is completely

closed.

sock_close(&my_socket);
while(tcp_tick(&my_socket)) {

// check timeout, do idle work...
}

These functions can be used to avoid blocking when using sock_write and some of the other
I/O functions. The following blocks of code illustrate a way of using the buffer management and

socket management functions to avoid blocking. The first block of code checks to make sure that
there is enough room in the buffer before adding data with a blocking function. The second makes

sure that there is a string terminated with a new line in the buffer, or that the buffer is full before

calling sock_gets.

if(sock_tbleft(&my_socket,size)) {
sock_write(&my_socket,buffer,size);

}

or:

sock_mode(&my_socket,TCP_MODE_ASCII);
if(sock_bytesready(&my_socket) != -1) {

sock_gets(buffer,MAX_BUFFER);
}

6.3.3.3 I/O Functions

sock_read
sock_fastread
sock_preread
sock_write
sock_fastwrite
sock_getc
sock_gets
sock_putc
sock_puts

There are two modes of reading and writing to TCP sockets: ASCII and binary. By default, a socket
is opened in binary mode, s o cbef5lha1 Tf/T9g.3496 0 TD
0 Tc
(c
[j
/F5 1 Tf
0.2527 0 TD
-0.00334189
26 An Introduction to TCP/IP

6.4 UDP Interface
udp_open
sock_read
sock_write
sock_fastread
sock_fastwrite
sock_gets
sock_puts
sock_getc
sock_putc
sock_recv_init
sock_recv
sock_recv_from

The UDP protocol is useful when sending messages where either a lost message does not cause a

system failure or is handled by the application. Since UDP is a simple protocol and you have con-
trol over the retransmissions, you can decide if you can trade low latency for high reliability.
Another advantage of UDP is the ability to broadcast packets to a number of computers on the

same network. When done properly, broadcasts can reduce overall network traffic because infor-
mation does not have to be duplicated when there are multiple destinations.

6.4.1 Opening and Closing
The udp_open function takes a remote IP address and port number. If they are set to a specific

value, all incoming and outgoing packets are filtered on that value (i.e., you talk only to the one

socket).

If the remote IP address is set to -1, it receives any packet, and outgoing packets are broadcast. If
the remote IP address is set to 0, no outgoing packets may be sent until a packet has been received.
This first packet completes the socket, filling in the remote IP address and port number with the

return address of the incoming packet. Multiple sockets can be opened on the same local port, with

the remote address set to 0, to accept multiple incoming connections from separate remote hosts.
When you are done communicating on a socket that was started with a 0 IP address, you can close

it with sock_close and reopen to make it ready for another source.

6.4.2 Writing
The normal socket functions you used for writing to a TCP socket will work for a UDP socket, but
since UDP is a significantly different service, the result could be different. Each atomic write—
sock_putc, sock_puts, sock_write, or sock_fastwrite—places its data into a single

UDP packet. Since UDP does not guarantee delivery or ordering of packets, the data received may

be different either in order or content than the data sent.
An Introduction to TCP/IP 27

6.4.3 Reading
There are two ways to read packets using DCRTCP.LIB. The first method uses the normal
sock_getc, sock_gets, sock_read, and sock_fastread functions. These functions

will read the data as it came into the socket, which is not necessarily the data that was written to

the socket.

The second mode of operation for reading uses the sock_recv_init, sock_recv, and

sock_recv_from functions. The sock_recv_init function installs a large buffer area that
gets divided into smaller buffers. Whenever a datagram arrives, DCRTCP.LIB stuffs that data-
gram into one of these new buffers. The sock_recv and sock_recv_from functions scan

these buffers. After calling sock_recv_init on the socket, you should not use sock_getc,
sock_read, or sock_fastread.

The sock_recv function scans the buffers for any datagrams received by that socket. If there is

a datagram, the length is returned and the user buffer is filled, otherwise it returns zero.

The sock_recv_from function works like sock_recv, but it allows you to record the IP

address where the datagram originated. If you want to reply, you can open a new UDP socket with

the IP address modified by sock_recv_from. There is no way to send UDP packets without a

socket.

6.4.4 Checksums
There is an optional checksum field inside the UDP header. This field verifies only the header
portion of the packet and doesn’t cover any part of the data. This feature can be disabled on a reli-
able network where the application has the ability to detect transmission errors. Disabling the UDP

checksum can increase the performance of UDP packets moving through DCRTCP.LIB. This

feature can be modified by:

sock_mode(s, UDP_MODE_CHK); // enable checksums
sock_mode(s, UDP_MODE_NOCHK); // disable checksums

6.5 Program Design
When designing your program, you must place some thought into how it will be structured. If you

plan on using the state-based approach, you need to select the appropriate functions.

6.5.1 State-Based Program Design
One strategy for designing your program with Dynamic C is to create a state machine within a

function where you pass it the socket. This method allows you to handle multiple sockets without
the services of a multitasking kernel. This is the way the HTTP.LIB functions are organized (see

HTTP in the Dynamic C TCP/IP High-level Protocols Manual). The general states are waiting to

be initialized, waiting for a connection, a bunch of connected states, and waiting for the socket to

be closed. Many of the common Internet protocols fit well into this state machine model. An

example of state-based programming is SAMPLES\TCPIP\STATE.C. This program is a basic

Web server that should work with most browsers. It allows a single connection at a time, but could

easily be extended to allow multiple connections.
28 An Introduction to TCP/IP

6.5.2 Blocking vs. Non-Blocking
The sock_fastread and sock_preread functions read as much data as is available in the

buffers, and return immediately. Similarly, the sock_fastwrite function fills the buffers and

returns the number of characters that were written. When using these functions, it is your responsi-
bility to ensure that all of the data were written completely.

offset=0;
while(offset<length) {

bytes_written=sock_fastwrite(&socket,buffer+offset,lenght-offset);
if(bytes_written<0) {

// error handling
}
offset+=bytes_written;

}

The other functions do not return until they have completed or there is an error. If it is important to

avoid blocking, you can check the conditions of an operation to insure that it will not block.

sock_mode(socket,TCP_MODE_ASCII);
// ...
if (sock_bytesready(&my_socket) != -1){

sock_gets(buffer,MAX_BUFFER);
}

In this case sock_gets will not block because it will be called only when there is a complete

new line terminated record to read.

6.5.3 Blocking Macros
To block at a certain point and wait for a condition, DCRTCP.LIB provides some macros to make

this task easier. In this program fragment, sock_wait_established is used to block the pro-
gram until a connection is established. Notice the timeout (second parameter) value of zero. This

tells Dynamic C to never timeout. Associated with these macros is a sock_err label to jump to

when there is an error. If you supply a pointer to a status integer, it will set the status to an error
code. Valid error codes are -1 for timeout and 1 for a reset connection.

tcp_open(&s,0,ip,PORT,NULL);
sock_wait_established(&s,0,NULL,&status);

//...

sock_err:
switch(status) {

case 1: /* foreign host closed */
printf("User closed session\n");
break;

case -1: /* timeout */
printf("\nConnection timed out\n");
break;

}

An Introduction to TCP/IP 29

6.6 Multitasking and TCP/IP
The TCP/IP engine may be used with the µC/OS real-time kernel. The line

#use ucos2.lib

 must appear before the line

#use dcrtcp.lib
30 An Introduction to TCP/IP

An Introduction to TCP/IP 31

7. Other References
1. A two-part article, Introduction to TCP/IP, in Embedded Systems Programming discusses

issues related to programming embedded systems.

http://www.embedded.com/internet/9912/9912ia1.htm

2. Ethereal is a good, free program for viewing network traffic. It works under various Unix
operatings systems and under Windows.

http://www.ethereal.com/

3. Computer Networks and Internets, Douglas E. Comer. Published by Prentice Hall. ISBN 0-
13-239070-1. This book gives an excellent high-level description of networks and their
interfaces.

4. TCP/IP Illustrated, Volume 1 The Protocols, W. Richard Stevens. Published by Addison-
Wesley. ISBN 0-20-163346-9. This book gives many useful low-level details about TCP/IP,
UDP, and ICMP.

http://www.embedded.com/internet/9912/9912ia1.htm
http://www.ethereal.com/

	1. Introduction
	2. Ethernet Basics
	2.1 Ethernet Address
	2.2 Physical Connections
	2.2.1 Cables

	2.3 Frames
	2.3.1 Collisions

	3. Networks
	3.1 LAN
	3.1.1 Repeaters and Bridges

	3.2 WAN
	3.2.1 Packet Switches
	3.2.2 Forwarding a Packet

	3.3 VPN
	3.4 Network Devices
	3.4.1 Routers
	3.4.2 Firewalls
	3.4.3 Gateways

	3.5 Network Architecture
	3.5.1 Client/Server Networks
	3.5.1.1 Port Numbers

	4. Network Protocol Layers
	4.1 Layering Models
	4.2 TCP/IP Protocol Stack

	5. TCP/IP Protocols
	5.1 IP
	5.1.1 IP Address
	5.1.2 IP Address Classes
	5.1.3 Netmasks
	5.1.4 Subnet Address
	5.1.5 Directed Broadcast Address
	5.1.6 Limited Broadcast Address

	5.2 IP Routing
	5.3 ARP
	5.4 The Transport Layer
	5.4.1 UDP
	5.4.2 TCP
	5.4.2.1 TCP Connection/Socket
	5.4.2.2 TCP Header

	5.4.3 ICMP

	5.5 The Application Layer
	5.5.1 DNS
	5.5.1.1 DCRTCP.LIB Implementation of DNS

	6. Dynamic C TCP/IP Implementation
	6.1 TCP/IP Configuration Macros
	6.1.1 IP Addresses Set Manually
	6.1.2 IP Addresses Set Dynamically
	6.1.3 Default Buffer Size
	6.1.4 Delay a Connection
	6.1.5 Runtime Configuration

	6.2 Skeleton Program
	6.3 TCP Socket
	6.3.1 Passive Open
	6.3.1.1 Example of Passive Open

	6.3.2 Active Open
	6.3.3 TCP Socket Functions
	6.3.3.1 Control Commands
	6.3.3.2 Status Commands
	6.3.3.3 I/O Functions

	6.4 UDP Interface
	6.4.1 Opening and Closing
	6.4.2 Writing
	6.4.3 Reading
	6.4.4 Checksums

	6.5 Program Design
	6.5.1 State-Based Program Design
	6.5.2 Blocking vs. Non-Blocking
	6.5.3 Blocking Macros

	6.6 Multitasking and TCP/IP

	7. Other References

