\J

Dynamic C

TCP/IP User’s Manual

000423-A

Dynamic C TCP/IP User’s Manual

Part Number 019-0100 « 000423-A
Printed in U.S.A.

Copyright
© 2001 Z-World, Inc. < All rights reserved.

The TCP/IP software used in the Rabbit 2000 TCP/IP Development Kit is designed for
use only with Rabbit Semiconductor chips, and is used under licence from Erick Engelke.

Z-World, Inc. reserves the right to make changes and improvements to its products with-
out providing notice.

Trademarks
* Dynamic C® is aregistered trademark of Z-World, Inc.
* Windows® isaregistered trademark of Microsoft Corporation

Notice to Users

When a system failure may cause serious consequences, protecting life and property
against such consequences with a backup system or safety device is essential. The buyer
agrees that protection against consequences resulting from system failure is the buyer’s
responsibility.

Thisdeviceis not approved for life-support or medical systems.

All Z-World products are 100 percent functionally tested. Additional testing may include
visual quality control inspections or mechanical defects analyzer inspections. Specifica-
tions are based on characterization of tested sample units rather than testing over tempera-
ture and voltage of each unit. Rabbit Semiconductor may qualify components to operate
within arange of parametersthat is different from the manufacturer’s recommended
range. This strategy is believed to be more economical and effective. Additional testing or
burn-in of anindividual unit is available by special arrangement.

Company Address

Z-World, Inc

2900 Spafford Street

Davis, California 95616-6800
USA

Telephone: (530) 757-3737
Facsimile: (530) 753-5141
Web site: http://www.zworld.com

Table of Contents

1 INtroducCtioncccoceeneeneeneeenseeeeenne. 1
2 TCPIIPENGINE......cooiirrenerecreireis 3
2.1 TCP/IP Configuration...........ccccceeeeeeenuene. 3
IP Addresses Set Manudlly................... 3
IP Addresses Set Dynamicaly 3
BOOTP/DHCP ControM/F5 1 Tf 0.253 Tf 0.72 0 TD ()4(fTf 0.(essf 4.2rosF5 1 Tf 0.2531)-12.9(P)]TJ/T9 1
BOOTP/DHCP

Dynamic C User’s Manual iii

tCp_opeN.....ccovveereeee 79 sspec_getfvoptccoeeveeee. 110

tcp_reserveportovveeeee. 81 sspec_getfvoptlistlen 110

ECP_tICK v 82 sspec_getfvreadonly m

UdP_OPEN ..o 83 SSpeC_getfvspec ... 11

2.8 MECTOS ...oooommeeereeeesssseeis s snsenens 85 sspec_getlength................... 112

DISABLE DNS........ccc...... 85 SSPEC_getname...........ceuee 112

MAX_SOCKETS......cc........ 85 sspec_getrealm............c...... 113

MY_DOMAINcccvvrennee. 85 SSPEC_JEttype.....cvvviinines 113
MY_GATEWAYcccovunee 85
MY_IP_ADDRESS............. 85
MY_NAMESERVER.......... 85
MY_NETMASKccooueuuee 85
SOCK_BUF_SIZE 86
tcp_MaxBufSize.................. 86
3 Server Utility Library........cccccoovovre, 87
3.1 Data Structuresfor Zserver.lib............... 87
ServerSpec SIructure.........cecveeeeeeenee. 87
ServerAuth Structure...........oceeeieeene 87
FormVar Structure..........cccoceeeerveennnne 87
3.2 Constants Used in Zserver.lib................ 88
ServerSpec Type Field ... 88
ServerSpec Vartype Field................... 88
Servermask fieldcocooeeeniniiine 88
Configurable Congtants............ccc...... 88
3.3 HTML FOrmS.....ccooeoierieeeereeenee 89
3.4 FUNCLIONS.....cceiiiiri e Q0
sauth_adduserc.......... 90
sauth_authenticate 91
sauth_getusername............... 92
sauth_getwriteaccess 92
sauth_setwriteaccess............ 93
sspec_addform..........ccceeee.e. 9
sspec_addfsfile.......ouenee. 95
sspec_addfunction 96
sspec_addfVv ... 96
sspec_addrootfile................. 97
sspec_addvariable................ 98
sspec_addxmemfile.............. 99
sspec_addxmemvar............ 100
sspec_aliasspec.....ooevveennee. 101
sspec_checkaccess............. 102
sspec_findfv.......ccoceeeenne. 102
sspec_findname.................. 103
sspec_findnextfile.............. 104
sspec_getfileloc 104
sspec_getfiletype................ 105
sspec_getformtitle.............. 105
sspec_getfunction 106
sspec_getfvdesc................. 107
sspec_getfventrytype......... 108
sspec_getfvlen 108
sspec_getfvname................ 109
sspec_getfvnum................. 109

iv Dynamic C User’s Manual

CGI Featurecceevvvvvnninnnnns 145 tp eXEC..vivvirierrcireieine 185
Web Pages With HTML Forms........ 145 . .
Sample HTML Page ... 126 8 SMTPMail Client....iiieinnne 187
POST-style form submission148 8.1 Sample Conversation..........cccceeuvveenens 187
URL-encoded Data 148 8.2 Configuration.........ccceveereeereereecnienens 188
Sample of aCGI Handler 150 8.3 FUNCONSvvvvvveeeeeseeeesneeeiissnneens 189
HTML Forms Using Zserverlib.......152 8.4 Sample Sending of an E-mail 192
4.4 FUNCLIONSccveevveereetee et 158 .
Cgi_redirectto. ..o 158 9 POP3Client.......cooovninereneres 193
cgi_sendstring........ccooeveneene 159 9.1 Configuration..........cccceeeeereneneneienens 193
http_addfile...........ccco...e. 159 9.2 Three Steps to Receive E-mail. 193
http_contentencode............. 160 9.3 Call-Back FUNCLON........ccooemrvereerrennns 194
http_delfile...............cccccoo. 161 Normal call-bacKc..ccoowererenneene. 194
E::g—‘:gif\f/r:r‘:f ------------------- -~ POP_PARSE_EXTRA call-back......194
http_handler ... 162 9.4 Functions............ e 195
REED_ I e 163 POPS I oo 195
pop3_getmailcccceeneee. 196
http_parseform 163 4
http,_SECOOKIE..orrrrr oo 164 pop3_t|ck s 196
http_urldecode.................... 165 9.5 Sample receiving of _eumall 197
shtml_addfunction............. 166 Sample Conversation........cc.cceevvveene 198
shtml_adavariale............ 167 10 TEINEL ..ooovoevrrererereeeseensiernenn 199
itm::gjf/‘;‘g:)‘fg:::::::::'jgg 10,1 CONfigUIAION MECTOS.....c 199
10.2 FUNCLIONS....ceeveeerieeeieeeeseee e 199
5 FTPCLIENT ..o, 169 10.3 An Example Telnet Server.................. 201
5.1 Configuration Macros.........c.ccecevereneens 169 A Sample Client To Connect to the
5.2 FUNCLIONS ... 170 SEIVE i 202
ftp_client_Setup........o..c... 170 11 Genera Purpose Console............... 203
ftp_client_ticK.......ccoveunee. 171)
ftp_C' ient_filesize............... 171 11.1 Introductioncccccvveevevvresese e 203
5.3 Sample FTP Transfer..oooooooveveeoreroron. 172 11.2 Con_sole Features...... R P 203
Using other Dynamic C Libraries.....203
6 FTPSEIVEl .., 173 11.3 Console Commands and Messages.....204
6.1 Configuration Constants...........c.cceeeveeee 173 Console Command Data Structure...204
File Optionsccoceveveeenerenceei 173 Help Text for General Cases204
6.2 File HandIerscoocoovmvvmnrerreriernerieneenns 174 Console Command Array 205
3112 A PO 174 Console Commands..........ccoceeerenenne 205
QAT SIZE o 175 Defauilt Command Functions206
£=55's ISP 175 Custom Console Commands209
1 (=N 176 Console Error Messages.................. 210
ClOSE. ..o, 176 Defauilt Error Messages 210
6.3 FUNCLONS ... 177 Custom Error Messages............. 211
6.4 Sample ETP SEVel oo 178 11.4 Console I/O Interface........cccovveeeerveenne 212
How to Include an I/O Method......... 212
7 TFTPClieNnt...eeeeeeeeeeeee 179 Predefined I/O Methods.................... 212
BOOTP/DHCPccvereererienn 179 Seria POrts ..o 212
Data Structure for TFTP........ccc...... 180 Telnet 212
Function Reference........c.ccccooevruenene. 180 SlavePort ..o 213
TFTP SESSioN ...coveveeieeiecee 180 Custom 1/O Methods 213
P Nt 181 Multiple 1/O Streams.......c.ccceevvenene 213
P NIt e 182 11.5 Console EXeCUtion............cocveeeveee.. 213
tFp_tick oo 183 File System Initidization.................. 214
tFP_tickX oo 184 Serial BUFFErS......o.ocveeeeeeereeeeerenenne 214
Dynamic C User’s Manual v

USING TCP/IP ..o 214

Required Console Functions............ 215
console init.......ccceveeenenne. 215

console ticK.....ccovviviennnn. 215

Console Execution Choices............. 215
Terminal Emulator 215

11.6 Backup System........cccoovvvviviieieenne 216

Data Structure for Backup System... 216
Array Definition for Backup System217

11.7 Console MaCros.........ccoeevveveveeeeninenns 217
11.8 Sample Program.......ccccceevvevvesvninnnnns 218
130 1= TS 225

Vi

Dynamic C User’s Manual

Introduction 1

This manual isintended for embedded system designers and support professionals who are using
an Ethernet-enabled controller board. Knowledge of networks and TCP/IP (Transmission Control
Protocol/Internet Protocol) is assumed. For an overview of these two topics a separate manual is
provided, An Introduction to TCP/IP. A basic understanding of HTML (HyperText Markup Lan-
guage) is also assumed. For information on this subject, there are numerous sources on the Web
and in any major book store.

The Dynamic C implementation of TCP/IP comprises several libraries. The main library is
DCRTCRP. LI B. It implements IP, TCP, and UDP (User Datagram Protocol). This, along with the
libraries ARP. LI B and | CVP. LI B, make up the transport and network layers of the TCP/IP pro-
tocol stack. The remaining libraries implement application-layer protocols.

All user-callable functions are listed and described in their appropriate chapter. Example programs
throughout the manual illustrate the use of al the different protocols. The sample code also pro-
vides templates for creating servers and clients of various types.

To address embedded system design needs, additional functionality has been included in Dynamic
C’'simplementation of TCP/IP. There are step-by-step instructions on how to create HTML forms,
allowing remote access and manipulation of information. Thereis aso a serial-based consol e that
can be used with TCP/IP to open up legacy systems for additional control and monitoring.

Introduction 1

TCP/IP User's Manual

TCP/IP Engine 2

This chapter describes the main library file, DCRTCP. LI B, which comprises the configuration
macros, the data structures and the functions used to initialize and drive TCP/IP. IP version 4 is
supported by DCRTCP. LI B.

2.1 TCP/IP Configuration

To run the TCP/IP engine, ahost (i.e., the controller board) needs to know its | P address, netmask
and default gateway. If DNS (Domain Name System) lookups are needed, a host will also need to
know the |P address of the local DNS server.

Media Access Control (MAC) address

Some | SPs require that the user provide them with aMAC address for their device. Run the utility
program, Sanpl es/ t cpi p/ di spl ay_nmac. c, to display the MAC address of your controller
board.

2.1.1 IP Addresses Set Manually

The necessary |P addresses can be set at compile time by defining the configuration macros:

MY_| P_ADDRESS, MY_NETMASK, MY_GATEWAY and MY_NAMESERVER respectively. At
runtime, the configuration functions, t cp_conf i g, set hosti d and set host nane can over-
ride the configuration macros.

2.1.2 IP Addresses Set Dynamically

Thelibrary BOOTP. LI B allows atarget board to be aBOOTP or DHCP client. The protocol used
depends on what type of server isinstalled on the local network. BOOTP and DHCP servers are
usually centrally located on alocal network and operated by the network administrator.

Both protocols allow a number of configuration parameters to be sent to the client, including:

* Client's|P address

* Net mask

e List of gateways

* Host and default domain name

e List of name servers

Both protocols also provide some inessential but useful information:

* Various standard servers, such asNTP, NIS, cookie, etc.
* A bootstrap server address

* The name of abootstrap file

To use these protocoals, include:

#def i ne USE_DHCP
#use DCRTCP. LI B

in your program.

Chapter 2: TCP/IP Engine 3

BOOTP assigns permanent | P addresses. DHCP can “lease” an |P addressto ahogt, i.e., assign the
IP address for alimited amount of time. The lease can also be specified as permanent by setting
_dhcpl i f e to~0UL (i.e. OXFFFFFFFF).

2.1.2.1 BOOTP/DHCP Control Macros
Various macros control the use of DHCP. They must be set before the line
#use "dcrtcp.|i b"intheapplication program.

USE_DHCP

If this macro is defined, the target uses BOOTP or DHCP to configure the required parameters. |f
USE_DHCP is not defined, then MY_| P_ADDRESS, MY_NETMASK, MY_GATEWAY and (possi-
bly) MY_NAMESERVER must be defined in the application program.

DHCP_USE_BOOTP

If defined, the target uses the first BOOTP response it gets. If not defined, the target waits for the
first DHCP offer and only if none comesin the time specified by _boot pti meout doesit
accept aBOOTP response (if any). Use of this macro speeds up the boot process, but at the
expense of ignoring DHCP offersif there is an eager BOOTP server on the local subnet.

DHCP_CLASS | D “Rabbi t 2000- TCPI P: Z-Wor | d: Test: 1. 0. 0"

This macro defines aclass identifier by which the OEM can identify the type of configuration
parameters expected. DHCP servers can use this information to direct the target to the appropriate
configuration file. Z-World recommends the standard format: “ hardware:vendor:product
code:firmware” version.

DHCP_USE_TFTP

If thisand USE_DHCP are defined, the library will use the BOOTP filename and server to obtain
an arbitrary configuration file that will be accessible in a buffer at physical address

_boot pdat a, with length, _boot psi ze. Theglobal variables, _boot pdone and

_boot per ror indicate the status of the boot file download. DHCP_USE _TFTP should be
defined to the maximum file size that may be downloaded.

2.1.2.2 BOOTP/DHCP Global Variables

The following list of global variables may be accessed by application code to obtain information
about DHCP or BOOTP. These variable are only accessible if USE_DHCP is defined.

_boot pon

Runtime control of whether to perform DHCP/BOOTP. Thisisinitially set to 'true’. It can be set to
false before calling sock_i ni t (the function that initializes the TCP/IP engine), causing static
configuration to be used. Static configuration uses the values defined for the configuration macros,
MY _| P_ADDRESS etc. If BOOTP fails during initialization, thiswill be reset to 0. If reset, then
you cancal dhcp_acqui re() at somelater time.

4 TCP/IP User's Manual

_survivebootp
Set to one of the following values:

0

Chapter 2: TCP/IP Engine

_bootpsize
Indicates how many bytes of the boot file have been downloaded. Only exists if
DHCP_USE_TFTP isdefined.

_bootpdata

Physical starting address of boot data. The length of this areawill be DHCP_USE TFTP bytes,
however, the actual amount of datain the buffer is given by _boot psi ze. Thisvariable only
exists if DHCP_USE_TFTP isdefined and isonly valid if _boot pdone is1. You can access the
data using xmen®r oot () and related functions.

_bootperror

Indicates any error which occurred in a TFTP process. This variable only existsif
DHCP_USE_TFTP isdefined and is only valid when _boot pdone is1, in which case
_boot perror issetto one of the following values (which are also documented with the
tftp_tick() function):

0: No error.
- 1: Error from boot file server, transfer terminated. This usually occurs because the server is
not configured properly, and has denied access to the nominated file.
- 2: Error, could not contact boot file server or lost contact.
- 3: Timed out, transfer terminated.
- 4: (not used)
- 5: Transfer complete, but truncated because buffer too small to receive the completefile.

6 TCP/IP User's Manual

2.1.2.3 BOOTP/DHCP Functions

dhcp_acquire
int dhcp_acquire(void);

DESCRIPTION

Thisfunction acquires a DHCP lease which has not yet been obtained, or has expired, or
wasrelinquished using dhcp_r el ease() . Normally, DHCP |eases are renewed auto-
matically, however if the DHCP server is down for an extended period then it might not
be possible to renew theleasein time, in which case the lease expires and TCP/IP should
not be used. Whentheleaseexpires, t cp_t i ck() will return0, and theglobal variable
for the IP address will be reset to 0. At some later time, this function can be called to try
to obtain an |P address.

This function blocks until the lease is renewed, or the process times out.

RETURN VALUE

0: OK, lease was not expired, or an |P address lease was acquired with the same | P ad-
dress as previously obtained.

- 1: Anerror occurred, no |P address is available. TCP/IP functionality isthus not avail-
able. Usua causes of an error are timeouts because a DHCP or BOOTP server is not
available within the timeout specified by the global variable _boot pt i neout (default
30 seconds).

1: Lease was re-acquired, however the | P address differs from the one previoudly ob-
tained. All existing sockets must be re-opened. Normally, DHCP serversare careful to re-
assign the same | P address previoudy used by the client, however thisis sometimes not
possible.

LIBRARY
BOOTP. LI B

Chapter 2: TCP/IP Engine

int dhcp_release(void);

DESCRIPTION
This function relinquishes a lease obtained from a DHCP server. This allows the server
to re-use the | P address which was dlocated to thistarget. After calling thisfunction, the
global variable for thelPaddressissetto 0, and it isnot possibleto call any other TCP/IP
function which requiresavalid IP address. Normally, dhcp_r el ease() would be
used on networks where only a small number of | P addresses are available, but there are
alarge number of hosts which need sporadic network access.

Thisfunction is non-blocking since it only sends one packet to the DHCP server and ex-
PECtS NO response.

RETURN VALUE
0: OK, lease was relinquished.
1: Not released, because an addressis currently being acquired, or because a boot file
(fromthe BOOTP or DHCP server) isbeing downloaded, or because some other network

resourceisin use e.qg. open TCP socket. Call dhcp_r el ease() again after there-
sourceisfreed.

- 1: Not released, because DHCP was not used to obtain alease, or no lease was acquired.

LIBRARY
BOOTP. LI B

2.1.2.4 DHCP Sample Program
Thefollowing sampleisavery basic TCP/IP program, that will initialize the TCP/IP interface, and
allow the device to be 'pinged' from another computer on the network. DHCP or BOOTP will be
used to obtain IP addresses and other

8 TCP/IP User's Manual

// Main define to cause BOOTP or DHCP to be used.
#def i ne USE_DHCP

/* These val ues may be used as a fallback if _survivebootp is set true.
QO herwi se, they will be ignored. Note that in a 'real' application
setting fall backs as hard-coded addresses woul d be unwi se. */

#define My_| P_ADDRESS "10. 10. 6. 179"
#defi ne MY_NETMASK " 255. 255. 255. 0"
#defi ne MY_GATEWAY "10. 10. 6. 1"

#memmap xmem
#use dcrtcp.lib

/* Print sone of the DHCP or BOOTP paraneters received. */
void print_results(void){
printf("Network Paranmeters:\r\n");
printf(" My P Address = %98l X\r\n", ny_ip_addr);
printf(" Netrmask = %08l X\r\n", sin_nmask);
i f (_dhcphost !'= ~0UL) {
i f (_dhcpstate == DHCP_ST PERMANENT) {
printf(" Permanent |ease\r\n");
} else {
printf("Remaining | ease= %d (sec)\r\n", _dhcplife -
SEC_TI MER)
printf("Renew |lease in %d (sec)\r\n", _dhcptl - SEC TI MER)
}
printf(" DHCP server
printf(" Boot server

%98l X\r\n", _dhcphost);
%98l X\r\n", _boot phost);

i f (gethostnane(NULL, 0))
printf(" Host nanme = %\r\n", gethostname(NULL, 0));
i f (getdomai nname(NULL, 0))
printf(" Domain name = %\r\n", getdomai nname(NULL, 0));

}
mai n() {
_survivebootp = 1; // So we can print our own nessage
_boot ptimeout = 6; // Short timeout for testing
sock _init();
i f (_dhcphost !'= ~0UL)
printf("Lease obtained\r\n");
el se {
printf("Lease not obtained. DHCP server may be down.\r\n");
printf("Using fallback parameters...\r\n");
}
print_results();
for (;;)
tcp_tick(NULL);
}

Chapter 2: TCP/IP Engine

2.1.3 Sizes for TCP/IP I/O Buffers
There are two macros that can define the size of the buffer that is used for UDP

10 TCP/IP User's Manual

To handle multiple simultaneous connections, each new connection will require its own

t cp_Socket and aseparatecal totcp_l i sten(), but using the same local port number
(I port vaue).tcp_listen() will immediately return, and you must poll for the incoming
connection. You can usethesock_wai t _est abl i shed macro, which callst cp_ti ck()
and blocks until the connection is established or manually poll the socket using
sock_established().

2.2.3 Active Open

When your Web browser retrieves a page, it actively opens one or more connectionsto the server’s
passively opened sockets. To actively open a connection, you call t cp_open() , which uses

parametersthat are similar totheonesusedint cp_| i st en() . Supply exact parametersfori na
and por t , which are the |P address and port number you want to connect to; thel port parame-
ter can be zero, which tells DCRTCP. LI B to select an unused local port between 1024 and 65535.

If t cp_open() returns zero, no connection was made. This could be due to routing difficulties,
such as an inability to resolve the remote computer’s hardware address with ARP.

2.2.4 Delay a Connection

To accept a connection request when the resources to actually process the request are not avail-
able, usethefunctiont cp_reserveport (). It takes one parameter, the port number where
you want to accept connections. When a connection to that port number is requested, the 3-way
handshaking is done even if thereis not yet a socket available. When replying to the connection
request, the window parameter in the TCP header is set to zero, meaning, “1 can take no bytes of
data at thistime.” The other side of the connection will wait until the value in the window parame-
ter indicates that data can be sent. Using the companion function, t cp_cl earr eser ve(port
nunber), causes TCP/IP to treat a connection request to the port in the conventional way. The
macro USE_RESERVEDPORTS is defined by default. It allows the use of these two functions.

Whenusingt cp_reserveport,the2MSL (Maximum Segment Lifetime) waiting period for
closing a socket is avoided.

2.2.5 TCP Socket Functions

There are many functions that can be applied to an open TCP socket. They fall into three main cat-
egories. Control, Status, and 1/0.

2.2.5.1 Control Functions
These functions change the status of the socket or its I/O buffer.

e sock_abort sock_flushnext

e sock close tep_listen

e sock_flush e tcp_open

tcp_open() andtcp_li sten() havebeen explained in previous sections.

Cal sock_cl ose() toendaconnection. This call may not immediately close the connection
because it may take some time to send the request to end the connection and receive the acknowl-
edgements. If you want to be sure that the connection is completely closed before continuing, call
tcp_tick() withthe socket structure’s address. Whent cp_ti ck() returns zero, then the

Chapter 2: TCP/IP Engine 11

socket is completely closed. Please note that if there is data left to be read on the socket, the socket
will not completely close.

Cadl sock_abort () tocancel an open connection. This function will cause a TCP reset to be
sent to the other end, and all future packets received on this connection will be ignored.

For performance reasons, data may not be immediately sent from a socket to its destination. If
your application requires the data to be sent immediately, you can call sock_f | ush() . This
function will cause DCRTCP. LI B to try sending any pending dataimmediately. If you know
ahead of time that data needs to be sent immediately, call sock _f | ushnext () on the socket.
Thisfunction will cause the next set of data written to the socket to be sent immediately, and is
more efficient than sock _f 1 ush() .

2.2.5.2 Status Functions
These functions return useful information about the status of either a socket or its I/O buffers.

* sock_bytesready e sock_rbused
* sock_dataready e sock_tbleft
* sock_established * sock_thsize
e sock_rbleft * sock_tbused
* sock _rhsize e tcp_tick

tcp_tick() isthedaemon that drivesthe TCP/IP engine, but it also returns status information.
When you supply t cp_ti ck() withapointertoat cp_Socket (astructurethat identifiesa
particular socket), it will first process packets and then check the indicated socket for an estab-
lished connection. t cp_t i ck() returns zero when the socket is completely closed. You can use
this return value after calling sock _cl ose() to determineif the socket is completely closed.

sock_cl ose(&ny_socket);

whil e(tcp_tick(&ry_socket)) {

/1l you can do other things here while waiting for the socket
/1l to be conpletely closed.

}

These status functions can be used to avoid blocking when using sock_wri t e() and some of
the other 1/0O functions, asillustrated in the following code.

Thisblock of code checks to make sure that there is enough room in the buffer before adding data
with ablocking function. .

i f(sock _tbleft(&my_socket, size)) {
sock _write(&my_socket, buffer, size);
}

12 TCP/IP User's Manual

Thisblock of code ensures that there is a string terminated with anew line in the buffer, or that the
buffer isfull before calling sock _get s() :

sock _node(&my_socket, TCP_MODE _ASCI |) ;

i f(sock_bytesready(&my _socket) !'= -1) {
sock _get s(buf fer, MAX BUFFER) ;

}

2.2.5.3 1/0 Functions

* sock fastread * sock putc
* sock fastwrite * sock puts
e sock_getc * sock read
e sock_gets e sock write

* sock_preread

There are two modes of reading and writing to TCP sockets: ASCII and binary. By default, a socket
is opened in binary mode, but you can change that with acall to sock_node() .

When asocket isin ASCII mode, DCRTCP. LI B assumes that the data is an ASCI| stream with
record boundaries on the newline characters for some of the functions. This behavior means
sock_byt esr eady() will return >=0 only when a complete newline-terminated string isin the
buffer or the buffer isfull. The sock _put s() function will automatically place a newline char-
acter at the end of astring, and thesock_get s() function will strip the newline character.

When in binary mode, do not usethesock _scanf (currently not implemented) or the
sock_get s() functions.

2.3 UDP I/O Interface

The UDP protocol is useful when sending messages where either alost message does not cause a
system failure or is handled by the application. Since UDP is a simple protocol and you have con-
trol over the retransmissions, you can decide if you can trade low latency for high reliability.

* sock fastread * sock read

* sock fastwrite * sock _recv

e sock_getc e sock_recv_from
e sock_gets * sock recv_init
* sock_preread e sock write

* sock_putc * udp_open

* sock puts

Notice that there are three additional 1/O functions that are only available for use with UDP sock-
ets: sock_recv(),sock _recv_from() andsock_recv_i nit (). Thestatusand con-

Chapter 2: TCP/IP Engine 13

trol functions that are avail able for TCP sockets also work for UDP sockets, with the exception of
the open functions, t cp_I i sten() andt cp_open().

Broadcast Packets

UDP can send broadcast packets (i.e., to send a packet to a number of computers on the same net-
work). When done properly, broadcasts can reduce overall network traffic because information
does nat have to be duplicated when there are multiple destinations.

2.3.1 Opening and Closing a UDP Socket

The udp_open function takes aremote | P address and a remate port number. If they are set to a
specific value, all incoming and outgoing packets are filtered on that value (i.e., you talk only to
the one remote address).

If the remote IP addressis set to -1, the UDP socket receives packets from any valid remote
address, and outgoing packets are broadcast. If the remote IP address is set to 0, no outgoing pack-
ets may be sent until a packet has been received. Thisfirst packet completes the socket, filling in
the remote | P address and port number with the return address of the incoming packet. Multiple
sockets can be opened on the same local port, with the remote address set to 0, to accept multiple
incoming connections from separate remote hosts. When you are done communicating on a socket
that was started with a0 IP address, you can close it with sock _cl ose() and reopen to make it
ready for another source.

2.3.2 Writing to a UDP Socket

The normal socket functions you used for writing to a TCP socket will work for a UDP socket, but
since UDPisasignificantly different service, the result could be different. Each atomic write—
sock_putc(),sock_puts(),sock_wite(),orsock _fastwite()—placesitsdata
into asingle UDP packet. Since UDP does not guarantee delivery or ordering of packets, the data
received may be different either in order or content than the data sent. Packets may also be dupli-
cated if they cross any gateways. A duplicate packet may be received well after the original.

2.3.3 Reading From a UDP Socket

There are two ways to read packets using DCRTCP. LI B. The first method uses the same read
functions that are used for TCP: sock_get ¢(),sock_gets(),sock_read(),and
sock_fastread() . Thesefunctionswill read the data as it came into the socket, which is not
necessarily the data that was written to the socket.

The second mode of operation for reading usesthesock_recv_init (), sock_recv(),and
sock _recv_from() functions. Thesock_recv_init () functioninstallsalarge buffer
areathat getsdivided into smaller buffers. Whenever adatagram arrives, DCRTCP. LI B stuffsthat
datagram into one of these new buffers. Thesock _recv() andsock _recv_from() func-
tions scan these buffers. After callingsock _recv_i ni t onthe socket, you should not use
sock _getc(),sock read(),orsock fastread().

Thesock_recv() function scansthe buffersfor any datagrams received by that socket. If there
isadatagram, the length is returned and the user buffer isfilled, otherwisesock_recv() returns
zero.

14 TCP/IP User's Manual

Thesock_recv_from() functionworkslikesock_recv(), butit allowsyou to record the
| P address where the datagram originated. If you want to reply, you can open a new UDP socket
with the IP address modified by sock_recv_from().

2.3.4 Checksums
Thereisan optional checksum field inside the UDP header. This field verifies only the header por-
tion of the packet and doesn’'t cover the data. This feature can be disabled on areliable network
where the application has the ability to detect transmission errors. Disabling the UDP checksum
can increase the performance of UDP packets moving through DCRTCP. LI B. Thisfeature can be
modified by:

sock_node(s, UDP_MODE CHK); /1 enabl e checksuns

sock_node(s, UDP_MODE NOCHK); // disable checksuns

The first parameter is a pointer to the socket’s data structure, either t cp_Socket or
udp_Socket .

2.4 Skeleton Program

The following program is a general outline for a Dynamic C TCP/IP program. The first couple of
defines set up the default I P configuration information. The “memmap” line causes the program to
compile as much code as it can in the extended code window. The “use’ line causes the compiler
to compile in the Dynamic C TCP/IP code using the configuration data provided above it.

Pi ngne. c:

#defi ne My_| P_ADDRESS "10. 10. 6. 101"
#defi ne MY_NETMASK " 255. 255. 255. 0"
#defi ne MY_GATEWAY "10. 10. 6. 19"
#menmmap Xmem
#use dcrtcp.lib
mai n() {

sock_init();

for (;;) {
tcp_tick(NULL);
}

To run this program, start Dynamic C and open the SAMPLES\ TCPI P\ | CMP\ PI NGVE. Cfile.
Edit the MY_I| P_ADDRESS, MY_NETMASK, and MY_GATEWAY macros to reflect the appropriate
values for your device. Run the program and try to run pi ng 10. 10. 6. 101 from acommand
line on a computer on the same physical network, replacing 10. 10. 6. 101 with your value for
MY _| P_ADDRESS.

2.4.1 TCP/IP Stack Initialization

Themai n() function first initializes the TCP/IP stack with acall to sock_i ni t (). Thiscall
initializes interna data structures and enabl es the Ethernet chip, which will take a couple of sec-
onds with the Real Tek chip. At this point, DCRTCP. LI B isready to handle incoming packets.

Chapter 2: TCP/IP Engine 15

2.4.2 Packet Processing

Incoming packets are processed whenever t cp_ti ck() iscalled. The user-calable functions
thatcall tcp_tick() are:tcp_open,udp_open,sock _read,sock_write,

sock_cl ose,andsock_abort . Some of the higher-level protocols, e.g. HTTP. LI B, will call
tcp_tick() automatically.

It isagood practice to make surethatt cp_ti ck() iscaled periodically in your program to
insure that the TCP/IP engine has had a chance to process packets. A rule of thumb isto call
tcp_tick() around 10 times per second, although slower or faster call rates should also work.
The Ethernet interface chip has alarge buffer memory, and TCP/IP is adaptive to the data rates
that both end of the connection can handle; thus the system will generally keep working over a
wide variety of tick rates.

2.4.3 TCP/IP Daemon Computing Time

The computing time consumed by each call tot cp_t i ck() varies. Rough numbers are lessthan
amillisecond if there is nothing to do, 10s of milliseconds for typical packet processing, and 100s
of milliseconds under exceptional circumstances.

2.5 State-Based Program Design

An efficient design strategy is to create a state machine within a function and pass the socket’s
data structure as afunction parameter. This method allows you to handle multiple sockets without
the services of amultitasking kernel. Thisisthe way the HTTP. LI B functions are organized.
Many of the common Internet protocols fit well into this state machine model.

The general states are:

e Wiaiting to beinitialized

e Wiaiting for a connection

* Connected states that perform the real work

* Waiting for the socket to be closed

An example of state-based programming is SAMPLES\ TCPI P\ STATE. C. Thisprogramisa
basic Web server that should work with most browsers. It allows a single connection at atime, but
can be extended to allow multiple connections.

2.5.1 Blocking vs. Non-Blocking
There is a choice between blocking and non-blocking functions when doing socket 1/0.

2.5.1.1 Non-Blocking Functions
Thesock _fastread() andsock_preread() functionsread as much dataasisavailablein
the buffers, and return immediately. Similarly, thesock _fastw it e() function fillsthe buff-

16 TCP/IP User's Manual

ers and returns the number of characters that were written. When using these functions, you must
ensurethat all of the data were written completely.

of f set =0;
whi | e(of f set <l ength) {
bytes witten=sock fastwite(&socket, buffer+offset,|ength-offset);
i f(bytes witten<0) {
[l error handling

of f set +=bytes written;

}

2.5.1.2 Blocking Functions

The other functions (sock_get c() ,sock_get s(),sock_putc(),sock_puts(),
sock_read() andsock_write()) donot return until they have completed or thereis an
error. If it isimportant to avoid blocking, you can check the conditions of an operation to insure
that it will not block.

sock _node(socket, TCP_MODE ASCI I) ;

...

i f (sock bytesready(&my_socket) != -1){
sock get s(buf f er, MAX BUFFER) ;

}

Inthiscasesock_get s() will not block because it will be called only when there is a complete
new line terminated record to read.

2.5.1.3 Blocking Macros

To block at a certain point and wait for a condition, DCRTCP. LI B provides the macros
sock_wait_cl osed,sock_wait_establishedandsock_wait _i nput,tomakethis
task easier.

In this program fragment, sock_wai t _est abl i shed isused to block the program until a con-
nection is established. Notice the timeout (second parameter) value of zero. Thistells Dynamic C
to never timeout. Associated with these macrosisasock_er r label to jump to when thereis an
error. If you supply a pointer to a status integer, it will set the status to an error code. Valid error
codes are - 1 for timeout and 1 for areset connection.

Chapter 2: TCP/IP Engine 17

tcp_open(&s, 0, i p, PORT, NULL) ;
sock _wait_established(&s, 0, NULL, &st at us) ;

...

sock_err:
switch(status) {
case 1: /* foreign host closed */
printf("User closed session\n");
br eak;
case -1: /* tinmeout */
printf("\nConnection tinmed out\n");
br eak;

2.6 Multitasking and TCP/IP

Dynamic C’'s TCP/IP implementation is compatible with both uC/OS-I1 and with the language
constructs that implement cooperative multitasking: costatements and cofunctions. Note that
TCP/IP isnot compatible with the dlice statement.

2.6.1 pC/OSs-I

The TCP/IP engine may be used with the uC/OS-I1 rea-time kernel. Theline
#use ucos2.1ib

must appear before the line
#use dcrtcp.lib

2.6.2 Cooperative Multitasking

The following program demonstrates the use of multiple TCP sockets with costatements. After
compiling and running the program, make the following telnet connections using your own IP
address:

telnet 10.10.6.11 8888
tel net 10.10.6.11 8889

18 TCP/IP User's Manual

#def i ne
#def i ne
#def i ne

#def i ne
#def i ne

#def i ne
#def i ne

#menmap

MY_I P_ADDRESS "10. 10. 6. 11"
MY_NETMASK " 255. 255. 255. 0"
MY_GATEWAY "10. 10. 6. 1"

PORT1 8888
PORT2 8889

SOCK_BUF_SI ZE 2048
MAX_SOCKETS 2

Xmem

#use "dcrtcp.lib"

tcp_Socket Socket 1;
tcp_Socket Socket 2;

#def i ne

MAX_BUFSI ZE 512

char buf 1] MAX_BUFSI ZE], buf 2[MAX_BUFSI ZE] ;

/1 The function that actually does the TCP work
cofunc int basic_tcp[2](tcp_Socket *tcp_sock, int port, char *buf){

aut o
aut o

int length, space_avali abl e;
sock_type *s

s = (sock_type *)tcp_sock;

tcp_listen(tcp_sock, port, 0O, O, NULL, 0);

/1 wait for a connection

whil e((-1 == sock_bytesready(s)) && (0 == sock_established(s))) {
/1 give other tasks tine to do things while we are waiting
yi el d;

}

whi | e(sock_establ i shed(s)) {
space_aval i able = sock_tbleft(s);

/1

limt transfer size to MAX BUFSI ZE, | eave roomfor '\0

i f(space_avaliable > (MAX BUFSI ZE- 1))

space_aval i abl e = (MAX_BUFSI ZE- 1) ;

/1 get sonme data
| ength = sock_fastread(s, buf, space_avaliable);

if(length > 0) { /[l did we receive any data?

}

buf [l ength] = "\0"; // print it to the stdio w ndow
printf("%", buf);

/1 send it back out to the user's telnet session

/1 sock fastwite will work-we verified the space beforehand
sock fastwite(s, buf, length);

yi el d; /1 give other tasks tine to run

sock

cl ose(s);

return 1;

Chapter 2: TCP/IP Engine 19

mai n() {
sock _init();
while (1) {
costate {
/!l Go do the TCP/IP part, on the first socket
wfd basic_tcp[O] (&Socket 1, PORT1, bufl);

}
costate {
/!l Go do the TCP/IP part, on the second socet
wfd basic_tcp[1] (&Socket 2, PORT2, buf2);
}
costate {
/1 drive the tcp stack
tcp_tick(NULL);
}
costate {
/1 Can insert application code herel!l
wai t f or (Del ayMs(100)) ;
}

20

TCP/IP User's Manual

2.7 Function Reference

This section contains descriptions for all user-callable functionsin DCRTCP. LI B. Descriptions
for select user-callable functionsin ARP. LI B, | CVP. LI B, BSDNAME. LI B and XMEM LI B are
also included. Note that ARP. LI B, | CMP. LI B and BSDNAME. LI B are automatically #use’'d
from DCRTCP. LI B.

_arp_resol ve

int _arp_resolve(longword ina, eth_address *ethap, int nowait);

DESCRIPTION
Gets the Ethernet address for the given |P address.

PARAMETERS
i na The IP address to resolve to an Ethernet address.
et hap The buffer to hold the Ethernet address.
nowai t If O, return immediately; elseif !0 wait up to 5 seconds trying to re-

solve the address.

RETURN VALUE

1: Success,
O: Failure.

LIBRARY
ARP. LI B

Chapter 2: TCP/IP Engine 21

_chk_pi ng

| ongword _chk_ping(| ongword host _ip, |ongword
*sequence_nunber);

DESCRIPTION

Checks for any outstanding ping repliesfrom host. _chk_pi ng should be called fre-
quently with ahost |Paddress. If an appropriate packet isfound from that host | P address,
the sequence number isreturned through * sequence_nunber . Thetime difference
between our request and their response is returned in milliseconds.

PARAMETERS
host _ip IP addressto receive ping reply from.

sequence_nunber Sequence number of reply.

RETURN VALUE
Time in milliseconds from the ping request to the host’s ping reply.
If _chk_pi ngreturnsOxf f f f f f f f L, therewereno ping receiptson thiscurrent call.
LIBRARY
| CMP. LI B

22 TCP/IP User's Manual

get domai nnane
char * getdommi nnanme(char *nane, int length);

DESCRIPTION

Gets the current domain name. The domain name can be changed by theset domai n-
nane function.

PARAMETERS
name Buffer to place the name.
| ength Max length of the name, or zero to get pointer to internal domain

name string.

RETURN VALUE

If | engt h >=1return pointer to nanme. If | engt h isnotlong enough to hold the
domain name, aNULL string iswritten to namne.

If | engt h =0 return pointer to internal string containing the domain name. Do not mod-
ify this string!

LIBRARY
BSDNAME. LI B

SEE ALSO
set domai nnane, gethostnane, sethostnane, getpeernane,
get sockname

EXAMPLE

mai n() {
sock_init();
printf("Using % for a domai n\n", getdomai nname(NULL, 0));

Chapter 2: TCP/IP Engine

| ongword get hostid(void);
DESCRIPTION
Return the | P address of the controller in host format.

RETURN VALUE
IP addressin host format, or zero if not assigned or not valid.

LIBRARY
DCRTCP. LI B

SEE ALSO
set hosti d

EXAMPLE

char * gethostname(char *name, int length);

DESCRIPTION
Gets the host portion of our name.

PARAMETERS
name Buffer to place the name.
| ength Max length of the name, or zero for internal.

RETURN VALUE

If length >=1, return name;
dseif length = 0, return interna host name buffer

24

TCP/IP User's Manual

get peer name
int getpeername(sock_type* s, void * dest, int * len);

DESCRIPTION
Gets the peer's IP address and port information for the specified socket.

PARAMETERS
S Pointer to the socket.
dest Pointer tosockaddr to holdthe socket information for the remote

end of the socket.The data structureis:

t ypedef struct sockaddr {

wor d s_type; /* reserved */
wor d S_port; /* port nunber, or zero if not connected */
| ongword s_ip; /* | P address, or zero if not connected */
byt e s_spares[6] ; /* not used for tcp/ip connections */

b
I en Pointer to thelength of sockaddr . A NULL pointer can be used to

represent thesi zeof (struct sockaddr).

RETURN VALUE

0: success;
- 1: failure,

LIBRARY
BSDNAME. LI B

SEE ALSO

get sockname

Chapter 2: TCP/IP Engine 25

get socknanme
i nt getsockname(sock_type * s, void * dest, int * len);

DESCRIPTION

Gets the controller’s | P address and port information for a particular socket.

PARAMETERS
s Pointer to the socket.
dest Pointer to sockaddr to hold the socket information for the local

end of the socket. The data structureis:

t ypedef struct sockaddr {

wor d s_type; /* reserved */
wor d S_port; /* port nunber, or zero if not connected */
| ongword s_ip; /* | P address, or zero if not connected */
byt e s_spares[6] ; /* not used for tcp/ip connections */

b
I en Pointer to thelength of sockaddr . A NULL pointer can be used to

represent thesi zeof (struct sockaddr) .BSDNAME. LI B
will assume 14 bytesif aNULL pointer is passed.
RETURN VALUE
0: Success;
- 1: Failure.

LIBRARY
BSDNAME. LI B

SEE ALSO

get peer name

26 TCP/IP User's Manual

ht onl

| ongword htonl (| ongword val ue);

DESCRIPTION

This function converts a host-ordered double word to a network-ordered double word.
Thisfunction is necessary if you are implementing standard internet protocol s because
the Rabbit does not use the standard for network byte ordering. The network orders bytes
with the most significant byte first and the least significant byte last. On the Rabbit, the
bytes are in the opposite order.

PARAMETERS
val ue Host-ordered double word.

RETURN VALUE
Host word in network format, e.g. ht onl (0x44332211) returns 0x11223344.

LIBRARY
DCRTCP. LI B

SEE ALSO
ht ons, ntohl, ntohs

ht ons

word htons(word val ue);

DESCRIPTION

Converts host-ordered word to a network-ordered word. Thisfunctionisnecessary if you
areimplementing standard internet protocols because the Rabbit does not use the stan-
dard for network byte ordering. The network orders bytes with the most significant byte
first and the least significant byte last. On the Rabbit, the bytes are in the opposite order
within each 16-bit section.

PARAMETERS

val ue Host-ordered word.

RETURN VALUE
Host-ordered word in network-ordered format, e.g. ht ons(0x1122) returns 0x2211.

LIBRARY
DCRTCP. LI B

SEE ALSO
htonl, ntohl, ntohs

Chapter 2: TCP/IP Engine

27

I net _addr
| ongword inet_addr(char * dotted_ip_string);

DESCRIPTION

Converts an | P address from dotted decimal 1P format to its binary representation. No
check is made as to the validity of the address.

PARAMETERS
dotted_ip_string Dotted decimal IP string, e.g. “10.10.6.100".

RETURN VALUE

O: Failure
Binary representation of dot t ed_i p_st ri ng: Success.

LIBRARY
DCRTCP. LI B

SEE ALSO

i net_ntoa

28 TCP/IP User's Manual

I net _ntoa
char *inet_ntoa(char *s, longword ip);

DESCRIPTION

Convertsabinary |P address to its dotted decimal format, e.g.
i net _ntoa(s, 0x0a0a0664) returnsapointer to "10.10.6.100".

PARAMETERS
s Location to place the dotted decimal string. A sufficient buffer size
would be 16 bytes.
ip The |IP address to convert.

RETURN VALUE
Pointer to dotted decimal string, i.e. s.

LIBRARY
DCRTCP. LI B

SEE ALSO
i net _addr

I p_timer_expired

word ip_timer_expired(void * s);

DESCRIPTION
Checksthetimer fidd (setby i p_ti mer _i ni t ()) inside the socket structure. This
functionisusedinthesock_wai t _. .. macrosto provide timeouts.
PARAMETERS
s Pointer to a socket.

RETURN VALUE

0: Not expired;
1: Expired.

LIBRARY
DCRTCP. LI B

Chapter 2: TCP/IP Engine

29

EXAMPLE USING IP_TIMER_EXPIRED

Thefollowing code is from a blocking configuration macro that calls the function
_i p_del ay2.

_ip_delay2(void *s, int tineoutseconds, procref fn, int *statusptr) {

i nt status;
ip_tinmer_init(s , tineoutseconds); [* set tineout */
do {
kbhit () ; /[* pernmit ~c */
if ('tep_tick(s)) {
status = 1; [* fully closed or reset */
br eak;
}
if (ip_tinmer_expired(s)) { /* check for expiration */
sock_abort(s); [* give up and use reset */
status = -1; /* signal an error */
br eak;
}
if (fn) { /* call optional user function */
if (status = fn(s))
br eak;
}
if (s->tcp.usr_yield)
(*s->tcp.usr_yield)(); [* call yield */

} while (1);
if (statusptr) *statusptr = status;
return(status);

30 TCP/IP User's Manual

Ip_timer_init
void ip_timer_init(void * s, word seconds);

DESCRIPTION
Setsatimer insidethe socket structure.

PARAMETERS
S Pointer to a socket.
seconds Number of secondsfor thetime-out, if thisvalueiszero, never time-
out.
LIBRARY
DCRTCP. LI B
SEE ALSO

i p_tinmer_expired

nt ohl
| ongword ntohl (| ongword val ue);

DESCRIPTION

Convertsnetwork-orderedlong word to host-orderedlong word. Thisfunctionis neces-
sary if you areimplementingstandardinternet protocol sbecausethe Rabbit doesnot use
the standard for network byte ordering. The network orders byteswith the most signifi-

cant bytefirst and theleast significant byte last. On the Rabbit, the bytesare in the oppo-
siteorder.

PARAMETERS
val ue Network-orderedlong word.

RETURN VALUE

Network-orderedlong word in host-ordered format,
e.g.nt ohl (0x44332211) returns0x11223344

LIBRARY
DCRTCP. LI B

SEE ALSO
ht ons, ntohs, htonl

Chapter 2: TCP/IP Engine

31

nt ohs
word ntohs(word val ue);

DESCRIPTION

Converts network-ordered word to host-ordered word. Converts host-ordered word to a
network-ordered word. This function is necessary if you are implementing standard in-
ternet protocols because the Rabbit does not use the standard for network byte ordering.
The network orders byteswith the most significant bytefirst and theleast significant byte
last. On the Rabhit, the bytes are in the opposite order.

PARAMETERS

val ue Network-ordered word.

RETURN VALUE

Network-ordered word in host-ordered format,
e.g.nt ohs(0x2211) returns 0x1122

LIBRARY
DCRTCP. LI B

SEE ALSO

htonl, ntohl, htons

paddr
unsi gned | ong paddr(voi d* pointer);

DESCRIPTION

Convertsalogical pointer into its physical address. Use caution when converting address
in the EO00-FFFF range. Thisfunction will return the address based on the XPC on entry.

PARAMETERS

poi nt er Pointer to convert.

RETURN VALUE
Physical address of pointer.

LIBRARY
XMEM LI B

32 TCP/IP User's Manual

pd_get addr ess
voi d pd_getaddress(int nic, void* buffer);

DESCRIPTION
This function copies the Ethernet address (e.g., MAC address) into the buffer.

PARAMETERS
ni c This parameter is reserved for future expandability and for now
should be assigned a value of 0.
buf fer Place to copy addressto. Must be at least 6 byes.

RETURN VALUE
None

LIBRARY
PKTDRV. LI B

EXAMPLE

mai n() {
char buf[6];
sock init();
pd_get addr ess(0, buf);

printf("Your Link Address is: %02x%02x: Y02x%02x: ¥02x%02x \ n",
buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);

Chapter 2: TCP/IP Engine

33

_ping
int _ping(|ongword host _ip, |ongword sequence_nunber);

DESCRIPTION
Generates an ICMP request for host. NOTE: thisisamacro that calls_send_pi ng.

PARAMETERS
host _ip I P addressto send ping.
sequence_nunber User-defined sequence number.

RETURN VALUE

0: Success;
! 0: Failure.

LIBRARY
| CVP. LI B

SEE ALSO

_chk_ping, _send ping

psocket
voi d psocket(void * s);

DESCRIPTION

Given an open UDP or TCP socket, the | P address of the remote host is printed out to the
Stdio window in dotted IP format followed by a colon and the decimal port number on
that machine. This routine can be useful for debugging your programs.

PARAMETERS

S Pointer to a socket.

RETURN VALUE
None.

LIBRARY
BSDNAME. LI B

34 TCP/IP User's Manual

resol ve
| ongword resol ve(char *host_string);

DESCRIPTION

Converts atext string, which contains either the dotted I1P address or host name, into the
longword containing the I P address. In the case of dotted I P, no validity check ismadefor
the address. NOTE: this function blocks. Names are currently limited to 128 characters.
If it is necessary to lookup larger names include the following line in the application pro-
gram:

#defi ne MAX_DOMAI N LENGTH <l en in chars>.

If DI SABLE_DNS has been defined this function will not do DNS lookup.

If you aretrying to resolve ahost name, you must set up at least one name server. You can
set the default name server by defining the MY_NAMESERVER macro at the top of your
program. Whenyou cal r esol ve() , itwill contact the name server and request the IP
address. If thereisan error, r esol ve() will return OL.

To ssimply convert dotted IP to longword, seei net _addr () .

For a sample program, see the Example Using tcp_open() listed undert cp_open() .

PARAMETERS

host string Pointer totext string to convert.

RETURN VALUE

O if failure,
I 0 isthelPaddress* host _stri ng resolvesto.

LIBRARY
DCRTCP. LI B

SEE ALSO

_arp_resolve, inet_addr, inet_ntoa

Chapter 2: TCP/IP Engine

35

rip
char * rip(char * string);

DESCRIPTION

Strips newline (\n) and/or carriage return (\r) from a string. Only the first \n and \r char-
actersarereplaced with\Os. Theresulting string beyond the first \O character is undefined.

PARAMETERS

string Pointer to a string.

RETURN VALUE
Pointer to the modified string.

LIBRARY
DCRTCP. LI B

EXAMPLE
set node(s, TCP_MODE ASCII);

sock_puts(s, rip(questionable string));

INASCII modesock_put s() adds \n; ri p isusedto make certain the string does not
already have a newline character. Remember, ri p modifies the source string, not a

copy!

36 TCP/IP User's Manual

_send_pi ng

int _send_ping(| ongword host, | ongword countnum byte ttl, byte
tos, longword *theid)

DESCRIPTION
Generates an ICMP request for host.

PARAMETERS
host IP address to send ping.
count num User-defined count number.
ttl Timeto livefor the packets (hop count). 255 isa standard value for
thisfield.
t os Type of service on the packets.
t hei d Theidentifier that was sent out.

RETURN VALUE

0: Successful;
- 1: Failure.

LIBRARY
| CVP. LI B

See also
_chk_ping, _ping

Chapter 2: TCP/IP Engine

set domai nnanme
char *set dommi nname(char *nane);

DESCRIPTION

The domain name returned by get domai nnanme() and usedforr esol ve() issat
to the value in the string pointed to by nane. Changing the contents of the string after a
set domai nname() will change the value of the system domain string. It is not rec-
ommended. Instead dedicate a satic location for holding the domain name.

set domai nname(NULL) isan acceptable way to remove any domain hame and
subsequent r esol ve calswill not attempt to append adomain name.

PARAMETERS

name Pointer to string.

RETURN VALUE
Painter to string that was passed in.

LIBRARY
BSDNAME. LI B

SEE ALSO

get domai nnane, sethostname, gethostname, getpeernane,
get sockname

38 TCP/IP User's Manual

set hostid
| ongword sethostid(|longword ip);

DESCRIPTION

This function changes the system’s default | P address, overriding the macro
MY_| P_ADDRESS. Changing this address will disrupt existing TCP or UDP sessions.
You should close al sockets before calling this function.

PARAMETERS

ip New |P address.

RETURN VALUE
New |P address.

LIBRARY
DCRTCP. LI B

SEE ALSO

get hosti d

set host nanme
char * sethostname(char *nane);
DESCRIPTION
Sets the host portion of our name.

PARAMETERS
name The new host name.

RETURN VALUE

Pointer to internal hostname buffer on success, or
NULL on error (if hostname istoo long).

LIBRARY
BSDNAME. LI B

Chapter 2: TCP/IP Engine

sock abort
voi d sock _abort(void * s);

DESCRIPTION

Close aconnectionimmediately. Under TCPthisisdone by sending aRST (reset). Under
UDP thereis no difference between sock _cl ose() andsock_abort ().

PARAMETERS

[Pointer to a socket.

RETURN VALUE
None.

LIBRARY
DCRTCP. LI B

SEE ALSO
sock_cl ose

40 TCP/IP User's Manual

sock byt esready
int sock_bytesready(void * s);

DESCRIPTION
If the socket isin binary mode, sock byt esr eady returns the number of byteswait-
ing to be read. If there are no bytes waiting, it returns - 1.

In ASCII mode, sock byt esr eady returns-1if there are no byteswaiting to be read
or thelinethat iswaiting isincomplete (no line terminating character hasbeenread.) The
number of byteswaiting to be read will be returned given one of thefollowing conditions:

* the buffer isfull
* the socket has been closed (no line terminating character can be sent,)
* acomplete line is waiting

In ASCII mode, ablank line will be read as a complete line with length O, which will be
the value returned. sock byt esr eady handles ASCII mode sockets better than
sock_dat ar eady, sinceit can distinguish between an empty line on the socket and an
empty buffer.

PARAMETERS

S Pointer to a socket.

RETURN VALUE

- 1: No bytes waiting to be read
0: In ASCII mode and ablank line is waiting to be read
>0: The number of byteswaiting to be read

LIBRARY
DCRTCP. LI B

SEE ALSO
sock_wait_established, sock established, sockstate

Chapter 2: TCP/IP Engine

sock cl ose
voi d sock _close(void * s);

DESCRIPTION
Attempts to close a socket; no more data may be sent or received through that socket.

In the case of UDP, the socket is closed immediately since UDP is a connectionless pro-
tocol. TCP, however, is aconnection-oriented protocol so the close must be negotiated
with the remote computer. Usesock_wai t _cl osed orwaitfort cp_ti ck() tore
turn O when passed the socket to ensure that a TCP connection is closed.

In emergency cases, it is possible to abort the TCP connection rather than closeit. Al-
though not recommended for normal transactions, this serviceisavailable and is used by
al TCP/IP systems.

PARAMETERS

S Pointer to a socket.

LIBRARY
DCRTCP. LI B

SEE ALSO
sock _abort, sock tick, sock wait_closed

sock _dat ar eady

int sock dataready(void *s);

DESCRIPTION

Getsthenumber of byteswaitingtoberead. If in ASCIl mode, it returns zero if anewline
character has not been read or the buffer isnot full. Seesock byt esr eady() fora
more general function.

PARAMETERS

S Pointer to a socket.

RETURN VALUE

0: No bytesto read,
I 0: Number of bytes ready to read.

LIBRARY
DCRTCP. LI B

42 TCP/IP User's Manual

sockerr
char *sockerr(void * s);

DESCRIPTION

Getsthelast ASCII error message recorded for a particular socket. If no messages have
been recorded, the returned valueis NULL. The messages are read-only; do not modify
them!

PARAMETERS

S Pointer to a socket.

RETURN VALUE

Pointer to last error message, or
NULL pointer if there have been no error messages.

LIBRARY
DCRTCP. LI B

EXAMPLE
char *p;

sock _err:
if (status == 1)
puts("C osed normal | y");
else if (p = sockerr(s))
printf("Socket closed with error "%'\n\r", p);

Chapter 2: TCP/IP Engine

sock _establi shed
int sock _established(void *s);

DESCRIPTION

TCP connections require a handshaked open to ensure that both sides recognize a con-
nection. Whether the connectionwasinitiatedwitht cp_open() ortcp_l i sten(),
sock_est abl i sh() will continueto return O until the connection is established, at
which time it will return 1. It is not enough to spin on this after alisten becauseit is pos-
sible for the socket to be opened, written to and closed between two checks.

sock_bytesready() canbecaledwithsock est abl i shed() tohandlethis
case.

UDPisaconnectionlessprotocol, hencesock _est abl i shed() awaysreturns1for
UDP sockets.

PARAMETERS

S Pointer to a socket.

RETURN VALUE

0: Not established;
1: Established.

LIBRARY
DCRTCP. LI B

SEE ALSO

sock _wait_established, sock bytesready, sockstate

44 TCP/IP User's Manual

sock fastread
int sock _fastread(void *s, byte *dp, int len);

DESCRIPTION

sock_fastread() atemptstoread datafrom asocket. If possible, the buffer, dp, is
filled, otherwise, only the number of bytesreadisreturned. A return value of -1 indicates
asocket error.

This function cannot be used on UDP sockets after sock_recv_i nit () iscaled.

For asample program, see Example of four input functionslisted under sock_r ead() .

PARAMETERS
s Pointer to a socket.
dp Buffer to put bytes that are read.
|l en Maximum number of bytes to write to the buffer.

RETURN VALUE
Number of bytesread or - 1 if there was an error.

LIBRARY
DCRTCP. LI B

SEE ALSO
sock read, sock fastwite, sock wite

Chapter 2: TCP/IP Engine

45

sock fastwite
int sock _fastwite(void *s, byte *dp, int len);

DESCRIPTION

Writesuptol en bytesfrom dp on socket s. Thisfunction writes as many bytes as pos-
sible to the socket and returns that number of bytes.

For UDP, sock_fastwite() will send onerecord if
len <= ETH MIU - 20 - 8

ETH_MruUisthe Ethernet Maximum Transmission Unit; 20 isthe IP header sizeand 8 is
the UDP header size. By default, thisis572 bytes. If | en isgreater than thisnumber, then
the function does not send the data and returns -1. Otherwise, the UDP datagram would
need to be fragmented.

For TCP, the new datais queued for sending and sock_fastwrit e() returnsthe
number of bytes that will be sent. The data may be transmitted immediately if enough
dataisin the buffer, or sufficient time has expired, or the user has explicitly used
sock_fl ushnext () toindicate thisdata should be flushed immediately. In either
case, no guarantee of acceptance at the other end is possible.

PARAMETERS
s Pointer to a socket.
dp Buffer to be written.
l en Maximum number of bytesto write to the socket.

RETURN VALUE

Number of bytes written, or
- 1 if therewas an error.

LIBRARY
DCRTCP. LI B

46 TCP/IP User's Manual

sock flush
void sock flush(void *s);

DESCRIPTION

sock_f 1l ush() will flush the unwritten portion of the TCP buffer to the network. No
guaranteeis given that the data was actually delivered. In the case of a UDP socket, no
action istaken.

sock _fl ushnext () isrecommended over sock fl ush().
PARAMETERS

S Pointer to a socket.

RETURN VALUE
None.

LIBRARY
DCRTCP. LI B

SEE ALSO

sock _flushnext, sock fastwite, sock wite, sockerr

Chapter 2: TCP/IP Engine

sock fl ushnext
voi d sock _flushnext(void *s);

DESCRIPTION

Writing to TCP sockets does not guarantee that the data are actually transmitted or that
the remote computer will pass that datato the other client in atimely fashion. Using a

flush function will guarantee that DCRTCP. LI B places the data onto the network. No
guarantee is made that the remote client will receive that data.

sock _fl ushnext () isthemost efficient of the flush functions. It causes the next
function that sends data to the socket to flush, meaning the datawill be transmitted im-
mediately.

Several functionsimply aflush and do not require an additional flush: sock_put s(),
and sometimessock_put ¢() (when passed a\n).

PARAMETERS

S Pointer to a socket.

RETURN VALUE
None.

LIBRARY
DCRTCP. LI B

SEE ALSO

sock write, sock fastread, sock read, sockerr,
sock_wait_input, sock_flush, sock flushnext

48 TCP/IP User's Manual

sock_getc
int sock getc(void *s);

DESCRIPTION
Gets the next character from the socket. NOTE: This function blocks.

This function cannot be used on UDP sockets after sock_recv_i ni t () iscaled.

For asample program, see Example of four input functionslisted under sock_r ead() .
PARAMETERS

S Pointer to a socket.

RETURN VALUE
Character read or - 1 if error.

LIBRARY
DCRTCP. LI B

Chapter 2: TCP/IP Engine

49

sock gets

int sock _gets(void *s, char *text, int len);

DESCRIPTION

Reads a string from a socket and replaces the CR or LF with a"\0'. If the string islonger
than| en, the string is null terminated and the remaining charactersin the string are dis-
carded.

Tousesock _get s(), youmust first set ASCIl modeusing sock _node() .
This function cannot be used on UDP sockets after sock_recv_i nit () iscaled.

For asample program, see Example of four input functionslisted under sock_r ead() .

PARAMETERS
s Pointer to a socket
t ext Buffer to put the string.
I en Max length of buffer.

RETURN VALUE

0 if buffer isempty, or if no"\r' or \n"isread, but buffer had room and the connection can
get more data;
I 0 isthelength of the string.

LIBRARY
DCRTCP. LI B

SEE ALSO
sock_puts, sock_putc, sock_getc, sock read, sock wite

sock_init
void sock _init(void);

DESCRIPTION

Thisfunction initializesthe packet driver and DCRTCP. LI B using the compiler defaults
for configuration. This function must be called before using other DCRTCP. LI B func-
tions.

LIBRARY
DCRTCP. LI B

50 TCP/IP User's Manual

sock node
voi d sock _node(void *s, word node);

DESCRIPTION

This function changes some of the basic handling of a socket. The following macros can
be passed as the 2nd parameter (OR’ d together if necessary):

TCP_MODE_ASCI | | TCP_MODE_BI NARY

TCP and UDP sockets are usually in binary mode which means an arbitrary stream
of bytesisalowed (TCP istreated as a byte stream and UDP is treated as records
filled with bytes.) The defaultis TCP_MODE_BI NARY. By changing the mode to
TCP_MODE_ASCI | , some of the DCRTCP. LI B functionswill see a stream of
records terminated with a newline character.

In ASCII mode, sock_byt esready() will return -1 until a newline-terminated
string isin the buffer or the buffer isfull. sock _put s() will append anewlineto
any output. sock_get s() (which should only be used in ASCII mode) removes
the newline and null terminates the string.

For a sample program, see Example of four input functions listed under
sock _read().

TCP_MODE_NAGLE | TCP_MODE_NONAGLE

The Nagle algorithm may substantially reduce network traffic with little negative ef-
fect on auser (In somesituations, the Nagle al gorithm even improves application per-
formance.) The default is TCP_MODE _NAGLE. This mode only affects TCP
connections. If you are doing X-Windows or real time data collection, you may
switch the Nagle agorithm off by selecting the TCP_MODE_NONAGLE flag.

UDP_MODE_CHK | UDP_MODE_NOCHK

Checksumsarerequired for TCP, but not for UDP. ThedefaultisUDP_MODE CHK.

If you are providing a checksum at a higher level, the low level checksum may be
redundant. The checksum for UDP can be disabled by selecting the

UDP_MODE _NOCHK flag. Notethat you do not control whether the remote comput-
er will send checksums. If that computer does checksum its outbound data,
DCRTCP. LI B will check the received packet's checksum.

PARAMETERS

s Pointer to a socket.

node New mode for specified socket.
LIBRARY

DCRTCP. LI B

Chapter 2: TCP/IP Engine

sock_preread
int sock_preread(void *s, byte *dp, int len);

DESCRIPTION

Thisfunctionreadsuptol en bytesfrom the socket into the buffer dp. Thebytesare not
removed from the socket's buffer.

PARAMETERS
S Pointer to a socket.
dp Buffer to preread into.
I en Maximum number of bytes to preread.

RETURN VALUE

0: No datawaiting;
- 1: Error,;
>0: Number of preread bytes.

LIBRARY
DCRTCP. LI B

SEE ALSO
sock fastread, sock fastwrite, sock read, sock wite

52 TCP/IP User's Manual

sock_puts
int sock_puts(void *s, byte *dp);

DESCRIPTION

A string is placed on the output buffer and flushed as described under

sock_fl ushnext () .If thesocketisin ASCIlI mode, CR and LF are appended to the
string. No other ASCI | character expansionisperformed. Notethat sock _put s() uses
sock_write(),andthusmay block if the output buffer isfull. Seesock_wri t e()
for more details.

PARAMETERS
s Pointer to a socket.
dp Buffer to read the string from.

RETURN VALUE
Length of string in buffer.

LIBRARY
DCRTCP. LI B

SEE ALSO
sock_gets, sock putc, sock getc, sock read, sock wite

sock rbleft
int sock rbleft(void *s);
DESCRIPTION

Determines the number of bytes available in the receive buffer.
PARAMETERS
s Pointer to a socket.

RETURN VALUE
Number of bytes available in the receive buffer.

LIBRARY
DCRTCP. LI B

SEE ALSO

sock _rbsize, sock rbused, sock tbsize, sock tbused,
sock tbleft

54 TCP/IP User's Manual

sock _rbsize
int sock rbsize(void *s);
DESCRIPTION
Determines the size of the receive buffer for the specified socket.

PARAMETERS

S Pointer to a socket.

RETURN VALUE
The size of the receive buffer.

LIBRARY
DCRTCP. LI B

SEE ALSO

sock _rbleft, sock rbused, sock thsize, sock_ tbused,
sock_tbleft

sock _rbused
int sock _rbused(void *s);
DESCRIPTION

Gets the number of bytesin usein the receive buffer for the specified socket.

PARAMETERS

S Pointer to a socket.

RETURN VALUE
Number of bytesin use.

LIBRARY
DCRTCP. LI B

SEE ALSO

sock rbleft, sock tbsize, sock tbused, sock tbleft

Chapter 2: TCP/IP Engine 55

int sock_read(void *s, byte *dp, int len);

DESCRIPTION

sock_read() will busywait until | en bytes are read or a socket error exists. If
sock_yi el d() hasbeen called, the user-defined function that is passed to it will be
caledinatight loop whilesock _read() isbusywaiting.

This function cannot be used or

56 TCP/IP User's Manual

EXAMPLE OF FOUR INPUT FUNCTIONS

Thefollowing program shows how the four main input functions may be used to read a
text stream. Notethat sock_f ast read() andsock_read() do not necessarily re-
turn acomplete or single line, they return blocks of bytes. In comparison,

sock_get c() returnsasingle byte at atime and yields poor performance.

This is a sanple FINGER program which conpares sock _fastread(),
sock read(), sock _gets(), and sock _getc() for handling ASCl I
dat a.

Note that sock fastread(), sock read(), and sock _getc()

do NOT return single line strings, they return ordered bytes.
sock_getc() looks the sinplest, but it has the highest overhead
both in ternms of DCRTCP, and especially in terns of the output

t hrough putch().

FI NGER [user] @nost npde where node is 0, 1, 2 or 3 to indicate

Al'l nmodes returned identical output to the screen.

E I . S TR T R S S

~

usi ng sock _fastread(), sock read(), sock getc() or sock gets().

Chapter 2: TCP/IP Engine

57

#define My_| P_ADDRESS "10.10.6.100"
#defi ne MY_NETMASK "255.255. 255. 0"
#mrenmap xmem

#use "dcrtcp.lib"
#def i ne FI NGER_PORT 79

finger(char* userid, char* host, |ongword hoststring, int method) {
tcp_Socket fi ngersock;
tcp_Socket *s;
char buffer[513];/* space for 512 plus zero terninator */
i nt status;
int len;

s = &fingersock;

if (!tcp_open(s, 0, host, FINGER PORT, NULL)) {
puts("Sorry, unable to connect to that machine right now");
return;

}

printf("waiting...\r");

sock_wait_established(s, sock delay , NULL, &status);

if (*userid)
printf("" %' is looking for "% ...\n\r\n\n", hoststring, userid);
strcpy(buffer, userid);
rip(buffer);/* kill all \'n and \r's */
strcat(buffer , "\n");

sock_puts(s, buffer);

swi tch (method) {

/***

* usi ng sock_fastread() *
***/

case 0 :
while (1) {
sock wait_input(s, 30, NULL, &status);

Il en = sock fastread(s, buffer, 512);
buffer[len] = 0; /[* must termnate it */
printf("%", buffer);

}

br eak;

TCP/IP User's Manual

/***

* usi ng sock_read()

***/

case 1 :
while(1) {
sock wait _input(s, 30, NULL, &status);
| en = sock_dataready(s);
if (len > sizeof(buffer))
| en = sizeof (buffer);

sock read(s, buffer, len);
buffer[len] = 0;
printf("9%", buffer);

}

br eak;

/***

* using sock _getc()

***/

case 2 :
while (1) {
sock_wait _input(s, 30, NULL, &status);
put ch(sock _getc(s));
}

br eak;

*

*

Chapter 2: TCP/IP Engine

59

/***

*

* using sock_gets()

***/

case 3 :
sock nmode(s, TCP_MODE ASCII);
while (1) {

sock wait _input(s, 30, NULL, &status);
|l en = sock _gets(s, buffer, 512);
puts(buffer);

}

br eak;
}
sock _err:
switch (status) {
case 1 : /* foreign host closed */
br eak;
case -1: /* tinmeout */
printf("\n\rConnection timed out!");
br eak;
}
sock _close(s);
printf("\n\r");

60

TCP/IP User's Manual

char *meth[]={"sock fastread", "sock read", "sock getc",
"sock gets"};

mai n() {
char *user, *server;
| ongwor d host;
i nt status;
wor d met hod;

sock _init();

strcpy(user,"root");
strcpy(user, "foo. bar");
nmet hod=0; /* sock fastread */

if (method > 3) {
puts("only values 0 through 3 are valid");
exit(2);
}
printf("Using method %s\n\r", nmeth[nethod]);
if (host = resolve(server)) {
status = finger(user, host, server, nethod);

} else {
printf("Could not resolve host '%'\n\r", server);
exit(3);

}

exit(status);

Chapter 2: TCP/IP Engine

61

sock recv
int sock_recv(sock_type *s, char *buffer, int len);

DESCRIPTION

After aUDP socket isinitialized with udp_open() andsock_recv_init(),
sock_r ecv scansthe buffersfor any datagram received by that socket.

PARAMETERS
S Pointer to a UDP socket.
buf fer Buffer to put datagram.
max| engt h Length of buffer.

RETURN VALUE

Length of datagram;
0 if no datagram found;
- 1 if receive buffer not initialized withsock _recv_init ().

LIBRARY
DCRTCP. LI B

SEE ALSO
sock _recv_from sock recv_init

62 TCP/IP User's Manual

EXAMPLE USING SOCK_RECV()

#define My_| P_ADDRESS "10. 10. 6. 100"
#defi ne MY_NETMASK "255. 255. 255. 0"
#memmap xmem

#use "dcrtcp.lib"
#defi ne SAMPLE 401

udp_Socket dat a;
char bigbuf[8192];

main() {
word tenpl en;
char spare[1500];

sock init();

if ('udp_open(&data, SAMPLE, Oxffffffff, SAMPLE, NULL)) {
put s("Coul d not open broadcast socket");
exit(3);

}

/* set large buffer node */
if (sock recv_init(&data, bigbuf, sizeof(bigbuf))) {
puts("Coul d not enable |arge buffers");

exit(3);
}
sock node(&data, UDP_MODE NOCHK); /* turn off checksuns */
while (1) {

tcp_tick(NULL);

if (tenplen = sock recv(&data, spare, sizeof(spare))) {

/* sonet hing received */
printf("Got % byte packet\n", tenplen);

}

}

Chapter 2: TCP/IP Engine

63

sock_recv_from

int sock_recv_from sock_type *s, long *hisip, word *hisport,
char *buffer, int len);

DESCRIPTION

After aUDP socket isinitialized with udp_open() andsock_recv_init(),
sock_recv_from() scansthe buffersfor any datagram received by that socket and
identifies the remote host’s address.

PARAMETERS
S Pointer to UDP socket.
hi sip IP of remote host, according to UDP header.
hi sport Port of remote hogt.
buf fer Buffer to put datagram in.
l en Length of buffer.

RETURN VALUE

>0: Length of datagram received;
0: No datagram;
- 1: Receive buffer was not initialized withsock _recv_init ().

LIBRARY
DCRTCP. LI B

SEE ALSO
sock_recv, sock recv_init

64 TCP/IP User's Manual

sock_recv_init
int sock_recv_init(sock_type *s, void *space, word len);

DESCRIPTION

The basic socket reading functions (sock_read(),sock_fastread(), etc.) are
not adequate for al your UDP needs. The most basic limitation istheir inability to treat
UDP as arecord service.

A record service must receive distinct datagrams and pass them to the user program as
such. You must know the length of the received datagram and the sender (if you opened
in broadcast mode). You may al so receive the datagrams very quickly, so you must have
amechanism to buffer them.

Once a socket is opened with udp_open() ,youcanusesock_recv_init() to
initialize that socket for sock_recv() andsock _recv_from() . Notethat
sock_recv() andrelated functions are incompatible with sock_r ead(),
sock fastread(),sock _gets() andsock getc().Onceyou have used
sock_recv_init(),youcannolonger usethe older-style cals.

sock_recv_init() instalsalarge buffer areawhich gets segmented into smaller
buffers. Whenever aUDP datagram arrives, DCRTCP. LI B stuffsthat datagraminto one
of these new buffers. The new functions scan those buffers. You must select the size of
the buffer you submittosock _recv_init () ; makeit aslarge aspossible, say 4K,
8K or 16K.

For asample program, see Example using sock_recv() listed under sock _recv().

PARAMETERS
s Pointer to a UDP socket.
space Buffer of temporary storage space to store newly received packets.
I en Size of the buffer.

RETURN VALUE
0.

LIBRARY
DCRTCP. LI B

SEE ALSO
sock_recv_from sock recv

Chapter 2: TCP/IP Engine

65

sockst at e

char *sockstate(void * s);

DESCRIPTION

Returns a string that gives the current state for a socket.

PARAMETERS

S Pointer to a socket.

RETURN VALUE

An ASCII message which represents the current state of the socket. These strings should
not be modified.

“Li st en" indicates a passively opened socket that iswaiting for a connection.
"SynSent " and "SynRcvd" are connection phase intermediate states.
"Est abl i shed" statesthat the connection is complete.

"Est A osi ng" "Fi nWai t 1" "Fi nWai t 2" "Cl oseWai t " "Cl osi ng"
"Last Ack" "Ti meWai t " and"Cl oseMSL" are connection termination intermediate
states.

"Cl osed" indicatesthat the connection is completely closed.
"UDP Socket " isaways returned for UDP sockets because they are stateless.

"Not an active socket "isadefault value used when the socket is not recognized
asUDPor TCPR.

LIBRARY

DCRTCP. LI B

SEE ALSO

sock_est abl i shed, sock_dat aready

char *p;

#i f def DEBUG
if (p = sockstate(s))

printf("Socket state is "%'\n\r", p);
#endi f DEBUG

66

TCP/IP User's Manual

sock thleft
int sock tbleft(void *s);

DESCRIPTION

Getsthe number of bytesleft in the transmit buffer. If you do not wish to block, you may
first query how much spaceis available for writing by calling this function before gener-
ating data that must be transmitted. This removes the need for your application to aso
buffer data.

PARAMETERS
S Pointer to a socket.

RETURN VALUE
Number of bytes|eft in the transmit buffer.

LIBRARY
DCRTCP. LI B

SEE ALSO

sock_rbsize, sock rbused, sock rhleft, sock_ tbsize,
sock_tbused

if (sock tbleft(s) > 10) {
/* we can send up to 10 bytes wi thout bl ocking or overflow ng */

Chapter 2: TCP/IP Engine 67

sock _tbsize
int sock tbsize(void *s);
DESCRIPTION
Determines the size of the transmit buffer for the specified socket.

PARAMETERS

S Pointer to a socket.

RETURN VALUE
The size of the transmit buffer.

LIBRARY
DCRTCP. LI B

SEE ALSO

sock_rbsize, sock rbused, sock rbhleft, sock tbleft,
sock_tbused

sock tbused
int sock tbused(void *s);
DESCRIPTION

Gets the number of bytesin usein the transmit buffer for the specified socket.
PARAMETERS
s Pointer to a socket.

RETURN VALUE
Number of bytesin use.

LIBRARY
DCRTCP. LI B

SEE ALSO

sock _rbsize, sock rbused, sock rbleft, sock tbsize,
sock tbleft

68 TCP/IP User's Manual

sock_tick
sock_tick(void * s, int * optional _status_ptr);

DESCRIPTION

Thismacro callst cp_ti ck() toquickly check incoming and outgoing data and to
manage all the open sockets. If our particular socket, s, is either closed or made inoper-
ative dueto an error condition, sock _ti ck() setsthevaue of

*optional _status_ptr (if thepointerisnot NULL) to 1, then jumpsto alocal,
user-supplied label, sock_er r. If the socket connection isfine and the pointer is not
NULL *opti onal _status_ptr issettoO.

PARAMETERS
S Pointer to a socket.
optional _status_ptr Pointer to status word.

RETURN VALUE
None.

LIBRARY
DCRTCP. LI B

Chapter 2: TCP/IP Engine

69

sock wait_cl osed

voi d sock_wait_closed(void* s, int seconds, int (*fptr)(), int*
stat us);

DESCRIPTION

This macro waits until a TCP connectionis fully closed. Returns immediately for UDP
sockets. On an error, the macro jumpsto alocal, user-supplied sock _er r labdl. If
f pt r returns!0the macro returnswith the statusword set to the value of f pt r ‘sreturn

value.
PARAMETERS

s Pointer to a socket.

seconds Number of seconds to wait before timing out. A value of zero indi-
cates the macro should never time-out. A good valueto useis
sock_del ay, asystem variable set on configuration. Typicaly
sock_del ay isabout 20 seconds, but can be set to something else
inmai n() .

fptr Function to call repeatedly while waiting. Thisisauser-supplied
function.

st at us Pointer to a status word.

RETURN VALUE
None.

LIBRARY
DCRTCP. LI B

SEE ALSO
sock_wait_established, sock wait _input

70 TCP/IP User's Manual

sock wait_established

voi d sock_wait_established(void* s, int seconds, int (*fptr)(),
int* status);

DESCRIPTION

This macro waits until aconnection is established for the specified TCP socket, or aborts
if atime-out occurs. It returnsimmediately for UDP sockets. On an error, the macro
jumpstothelocal, user-suppliedsock _err label. If f pt r, auser-supplied function, re-
turns zero the macro returns.

PARAMETERS

s Pointer to a socket.

seconds Number of seconds to wait before timing out. A value of zero indi-
cates the macro should never time-out. A good valueto useis
sock_del ay, asystem variable set on configuration. Typicaly
sock_del ay isabout 20 seconds, but can be set to something else
inmai n() .

fptr Function to call repeatedly while waiting. Thisisauser-supplied
function.

st at us Pointer to a status word.

RETURN VALUE
None.

LIBRARY
DCRTCP. LI B

SEE ALSO
sock_wait_input, sock wait_cl osed

Chapter 2: TCP/IP Engine

sock_wai t _i nput

voi d sock_wait _input(void* s, int seconds, int (*fptr)(), int*

stat us);

DESCRIPTION

Waits until input existsfor functionssuchassock_read() andsock_gets() .As
described under sock _node() ,ifinASCII mode, sock_wai t _i nput only returns
when a complete string exists or the buffer isfull.

Under some conditions, (e.g., theremote or local host closes or resets the connection) this
macro jumpsto alocal, user-supplied sock _er r label.

For sample programs, seethe exampleslistedundert cp_open() ,tcp_li sten(),
andsock_read().

PARAMETERS

s Pointer to a socket.

seconds Number of seconds to wait before timing out. A value of zero indi-
cates the macro should never time-out. A good valueto useis
sock_del ay, asystem variable set on configuration. Typicaly
sock_del ay isabout 20 seconds, but can be set to something else
inmai n() .

fptr Function to call repeatedly while waiting.

st at us A pointer to the statusword. If this parameter isNULL, no status

number will be available, but the macro will otherwise function nor-
mally. Typicaly the pointer will point to alocal signed integer that
isused only for status. st at us may betested to determine how the
socket wasended. A vaueof 1 meansaproper closewhilea-1val-
ueindicates areset or abort.

RETURN VALUE

None.

LIBRARY

DCRTCP. LI B

SEE ALSO

sock_wait_established, sock wait_closed, sock node

72

TCP/IP User's Manual

sock wite
int sock_wite(void *s, byte *dp, int len);

DESCRIPTION

Writesupto| en bytesfrom dp on socket s. Thisfunction busywaits until either the
buffer is completely written or asocket error occurs. If sock_yi el d() hasbeen
called, the user-defined function that is passed to it will be called in atight loop while
sock_write() isbusywaiting.

For UDP,sock_writ e() will sendone (or more) records. For TCP, the new datamay
betransmitted if enough dataisin the buffer or sufficient time has expired or the user has
explicitly used sock_f I ushnext () toindicate this data should be flushed immedi-
ately. In either case, there is no guarantee of acceptance at the other end.

PARAMETERS
s Pointer to a socket
dp Pointer to a buffer.
|l en Maximum number of bytes to write to the buffer.

RETURN VALUE
Number of byteswritten or - 1 on an error.

LIBRARY
DCRTCP. LI B

SEE ALSO

sock read, sock fastwite, sock fastread, sockerr,
sock_wait_input, sock_flush, sock_ flushnext

Chapter 2: TCP/IP Engine

73

sock yield
int sock_yield(tcp_Socket *s, void (*fn)());

DESCRIPTION

Thisfunction, if called prior to one of the blocking functions, will causef n, the user-
defined function that is passed in as the second parameter, to be called repeatedly while
the blocking function isin abusywait state.

PARAMETERS
S Pointer to a TCP socket.
fn User-defined function.

RETURN VALUE
0

LIBRARY
DCRTCP. LI B

tcp_cl earreserve

void tcp_clearreserve(word port);

DESCRIPTION

This function causes the DCRTCP. LI B stack to handle a socket connection to the spec-
ified port normally. Thisundoesthe actiontakenby t cp_reserveport ().

PARAMETERS

port Port to use.

RETURN VALUE
None.

LIBRARY
DCRTCP. LI B

SEE ALSO

tcp_reserveport

74 TCP/IP User's Manual

tcp_config

void tcp_config(char *nane, char *val ue);

DESCRIPTION

Sets TCP/IP stack parameters at runtime. It should not be called with open sockets.

Additionally, MY_I P_ADDRESS can be overridden by set hosti d() , and
MY_HOSTNANME can be overridden by set host name() .

PARAMETERS

nane

val ue

RETURN VALUE
None

LIBRARY
DCRTCP. LI B

Setting to be changed.The possible parameters are:

MY _| P_ADDRESS: host IP address (useset host i d() instead)
MY_NETMASK

MY_GATEWAY: host’s default gateway

MY_NAMESERVER: host's default nameserver

MY_HOSTNAME

MY_DOVAI NNAME: host’s domain name (use set donmai n-
nane() instead)

MT'U: maximum size of packets

Thevaueto assignto nane.

Chapter 2: TCP/IP Engine

75

tcp_keepalive
int tcp_keepalive(tcp_Socket *s, long tineout);

DESCRIPTION

Enableor disable TCP keepalives on aspecified socket. The socket must already be open.
K eepaliveswill then be sent after "timeout" seconds of inactivity. It ishighly recommend-
ed to keep timeout aslong as possible, to reduce the load on the network. Ideally, thetim-
eout should be no shorter than 2 hours. After the timeout is sent, and

KEEPALI VE_WAI TTI ME seconds pass, another keepalive will be sent, in casethefirst
waslogt. Thiswill beretried KEEPALI VE_NUMRETRYS times. Both of these macros
can be #defined at the top of your program, overriding the defaults of 60 seconds, and 4
retries.

Using keepalivesis not arecommended procedure. Ideally, the application using the
socket should senditsownkeepalives.t cp_keepal i ve() isprovided becausetelnet
and afew other network protocols do not have amethod of sending keepalives at the ap-

plication level.
PARAMETERS
s Pointer to a socket.
ti meout Period of inactivity, in seconds, before sending a keepalive or 0 to

turn off keepalives.

RETURN VALUE
0: Success;
1: Error

LIBRARY
DCRTCP. LI B

SEE ALSO
sock_fastread, sock_fastwrite, sock_write, sockerr, sock_wait_input

76 TCP/IP User's Manual

tcp_listen

int tcp_listen(tcp_Socket *s, word I port, longword ina, word

port, int (*signal _handler), word tinmeout);

DESCRIPTION

Thisfunction tells DCRTCP. LI B that an incoming session for a particular port will be
accepted. Afteracaltot cp_I| i sten(),thefunctionsock _est abl i shed() (or
themacrosock _wai t _est abl i shed) must be called to poll the connection until a
session is fully established.

It ispossible for aconnection to be opened, written to and cl osed between two callsto the
functionsock_est abl i shed() . Tohandlethiscase, cal sock byt esready()
orsock _dat ar eady() todetermineif thereis datato be read from the buffer.

Multiplecallstot cp_I| i st en() tothesameloca port (I por t) are acceptable and
constitute the DCRTCP. LI B mechanism for supporting multiple incoming connections
tothe samelocal port. Eachtime another host attemptsto open asession on that particular
port, another one of the listens will be consumed until such time as all listens have be-
come established sessions and subsequent remote host attempts will receive areset.

PARAMETERS

s Pointer to a socket.

| port Port to listen on (the loca port number).

i na IP address of the remote host to accept connectionsfrom or O
for all.

port Port to accept connections from or O for all.

si gnal _handl er Thisfunction is called if the connection is either closed or re-
set. Theparameter for si gnal _handl er isthe pointer to
afunction which will be called when the socket is either
closed or reset. Some details for implementation of this ser-
vice have not been finalized, and it isrecommended the user
insert a value of NULL for the present time.

ti meout Number of secondsto wait before timing out in

sock _wait_establ i shed. Setto zero for no time-out.

RETURN VALUE

O: Error;
1: Success.

LIBRARY
DCRTCP. LI B

SEE ALSO
tcp_open

Chapter 2: TCP/IP Engine

7

EXAMPLE USING TCP_LISTEN()

#define My_| P_ADDRESS "10. 10. 6. 100"
#defi ne MY_NETMASK "255. 255. 255. 0"
#memmap xmem

#use "dcrtcp.lib"

#def i ne TELNET_PORT 23

static tcp_Socket *s;
char *useri d;

telnets(int port) {
tcp_Socket tel netsock;
char buffer[512];
i nt status;
int len;
s = &t el netsock;
tcp listen(s, port, OL, O, NULL, 0);

sock wait_established(s, 0, NULL, &status);
put s(" Recei ving i ncom ng connection");

sock node(s, TCP_MODE ASCI|);
sock puts(s, "Welcone to a sanple tel net server.");

sock puts(s, "Each line you type will be printed on this"\
"screen once you hit return.");

/* other guy closes connection except if we tineout */

while (1) {

sock wait _input(s, 0, NULL, &status);
sock _gets(s, buffer, 512);
puts(buffer);

}

sock_err:

switch (status) {
case 1 : /* foreign host closed */
put s("User cl osed session");
return;
case -1: /* timeout */
printf("\n\rConnection tined out!");

return;
}
}
mai n() {
sock init();
tel nets(TELNET_PORT);
exit(0);
}

78 TCP/IP User's Manual

t cp_open

int tcp_open(void *s, word | port, longword ina, word port,
int (*signal _handler)());

DESCRIPTION

This function actively creates a session with another machine. After acal to
t cp_open(),thefunctionsock_est abl i shed() (or the macro
sock_wai t _est abl i shed) must be called to poll the connection until asession is

fully established.

It ispossible for aconnection to be opened, written to and closed betweentwo callsto the
functionsock_est abl i shed() . Tohandlethiscase, call sock byt esr eady()
orsock _dat ar eady() todetermineif thereis datato be read from the buffer.

PARAMETERS
S

| port

i na
port

si gnal _handl er

RETURN VALUE

Pointer to a socket.

Our port, zero for the next available 1025-65536. A few ap-
plications will require you to use a particular local port num-
ber, but most network applicationslet you usea most any port
with a certain set of restrictions. For example, FI NGER or
TELNET clients can use any local port value, so passthe val-
ueof zerofor| port andlet DCRTCP. LI B pick onefor you.

| P address to connect to.
Port to connect to.

Thisfunction iscalled if the connection is either closed or re-
set. The parameter for si gnal _handl er isthe pointer to
afunction which will be called when the socket is either
closed or reset. Some details for implementation of this ser-
vice have not been finalized, and it isrecommended the user
insert a value of NULL for the present time.

0: Unable to resolve the remote computer's hardware address;

I 0 otherwise.

LIBRARY
DCRTCP. LI B

SEE ALSO
tcp_listen

Chapter 2: TCP/IP Engine

79

EXAMPLE USING TCP_OPEN()

#define My_| P_ADDRESS "10. 10. 6. 100"
#defi ne MY_NETMASK "255. 255. 255. 0"
#memmap xmem

#use "dcrtcp.lib"

#defi ne ADDRESS "10. 10. 6. 19"
#def i ne PORT " 200"

mai n() {
wor d st at us;
word port;
| ongwor d host;
tcp_Socket tsock;

sock init();

if (!'(host = resol ve(ADDRESS))) {
put s("Coul d not resolve host");
exit(3);
}
port = atoi(PORT);
printf("Attenpting to open '%' on port %\n\r", ADDRESS, port);
if (!tcp_open(& sock, 0, host, port , NULL)) {
put s("Unable to open TCP session");
exit(3);
}

printf("Wiiting a maxi mum of % seconds for connection"\
' to be established\n\r", sock delay);

sock wait_established(& sock, sock delay, NULL, &status);
put s("Socket is established");

sock cl ose(&t sock);

sock wait _cl osed(& sock, sock delay, NULL, &status);

sock_err:
switch (status) {
case 1 :
put s(" Connection closed nornal | y");
br eak;
case 2 :
put s(" Probl em occurred...");
sockerr(&t sock);
br eak;

}
exit((status ==1) ?20: 1);

80 TCP/IP User's Manual

/* the following are the results fromrunning 'test sunee 25'

Attenpting to open 'sunee' on port 25

Waiting a maxi rum of 10 seconds for connection to be established
Socket is established

Connection cl osed normal |y

*/

tcp_reserveport
void tcp_reserveport(word port);

DESCRIPTION

This function allows a connection to be established even if thereis not yet a socket avail-
able. Thisis done by setting a parameter in the TCP header during the connection setup
phase that indicates 0 bytes of data can be received at the present time. The requesting
end of the connection will wait until the TCP header parameter indicatesthat datawill be
accepted.

The 2M SL waiting period for closing a socket is avoided by using this function.

The penalty of slower connection times on acontroller that is processing alarge number
of connectionsis offset by alowing the program to have less sockets and consequently
less RAM usage.

PARAMETERS

port Port to use.

RETURN VALUE
None.

LIBRARY
DCRTCP. LI B

SEE ALSO

t Cp_C| earreserve

Chapter 2: TCP/IP Engine

81

tcp_tick

i nt

tcp_tick(void *s);

DESCRIPTION

Thisfunctionisasingle kernel routine designed to quickly process packets and return as
soon aspossible. t cp_ti ck() performs processing on al sockets upon each invoca-
tion: checking for new packets, processing those packets, and performing retransmissions
on lost data. On most other computer systems and other kernels, performing these re-
quired operationsin the background is often done by atask switch. DCRTCP. LI B does
not use atasker for its basic operation, although it can adopt one for the user-level servic-
€s.

Although you may ignore the returned valueof t cp_t i ck() , itisthe easiest method
to determine the status of the given socket.

PARAMETERS

S Pointer to a socket. If NULL, the returned valueis always 0.

RETURN VALUE

0: Connection reset or closed by other host or NULL was passed in.
I'0: Connectionisfine.

LIBRARY

DCRTCP. LI B

SEE ALSO

tcp_open, sock _close, sock_abort, sock tick,
sock _wait_established

82

TCP/IP User's Manual

udp_open

i nt udp_open(udp_Socket *s, word I port, |longword ina, word
port, int (*datahandler)());

DESCRIPTION

UDP sockets are used for connectionless data transfers. Despite the connectionless na-
ture, which is protocol-dependent, DCRTCP. LI B imposes a socket mechanism that re-
quires a destination address. As described under the UDP datagram service, you may
elect to use datagram-oriented features.

If the remote host is set to -1, all packets received by this computer and destined for

| port will return datawith the various read statements. Write statementsto this socket
will cause broadcasts. This mechanism is suitable for broadcast information such asRIP
packets. If theremote host is set to 0, the next packet received by DCRTCP. LI B destined
for this machine's UDP port number, | por t , will complete the socket.

If the remote host is set to a particular address, either host may initiate traffic. Multiple
calstoudp_open() withi na setto zeroisauseful way of accepting multipleincom-
ing sessions.

udp_open() will return O if the socket cannot be opened. A typical reason would be
that the host's physical address cannot be resolved using ARP or normal routing mecha-
nisms. When an error occurs, you might try the PI NG, EXE application to test the acces-
sibility of the other computer.

Although multiplecallstoudp_open() may normaly be madewith the samel por t
number, only oneudp_open() shouldbemadeonaparticular | por t if thei naisset
to -1. Essentialy, the broadcast and nonbroadcast protocols cannot co-exist.

PARAMETERS
S Pointer to a UDP socket.
| port Local port
i na Acceptable remote IP, or -1 for broadcadt.
port Acceptable remote port, or -1 for broadcast.
dat a_handl er Function to call when dataiis received.

RETURN VALUE
0 if destination hardware address cannot be resolved; ! 0 otherwise.

LIBRARY
DCRTCP. LI B

SEE ALSO

sock recv, sock recv_init, sock recv_from

Chapter 2: TCP/IP Engine 83

EXAMPLE OF USING UDP_OPEN()

#defi ne My_| P_ADDRESS "10. 10. 6. 100"
#defi ne MY_NETMASK " 255. 255. 255. 0"
#menmap Xxmem

#use "dcrtcp.lib"

#defi ne ADDRESS " 10. 10. 6. 19"
#defi ne PORT "200"

mai n() {
word status, port;
| ongwor d host ;
udp_Socket usock;

sock _init();

if (!'(host = resolve(ADDRESS))) {
put s("Coul d not resolve host");
exit(3);

}

port = atoi(PORT);

printf("Attenpting to open '%' on port %\n\r", ADDRESS, port);
if ('udp_open(&usock, 0, host, port , NULL)) {

put s("Unable to open UDP session");
exit(3);
}

/* udp, no need to wait for connection unless expecting incon ng
session. wait_sock _established would return i medi ately */

put s(" Socket is established");

/* note, no data has been sent, no connection established, the

ot her guy doesn't even know we are interested
sock_cl ose(&usock);

sock_err:
switch (status) {
case 1 :
put s(" Connecti on cl osed nornmal ly");
br eak;
case 2 :
put s(" Probl em occurred...");
sockerr(&usock);
br eak;
}
exit((status ==1) 2 0: 1);

}

/* the results of running ' TEST sunee 25' are
Attenpting to open 'sunee' on port 25
Socket is established
Connection closed normally */

*/

84

TCP/IP User's Manual

2.8 Macros

This macro disables DNS lookup. This prevents a UDP socket for DNS from being allo-
cated, thus saving memory. Users may till call r esol ve() with an IP address.

This macro defines the number of sockets that will be allocated, not including the socket d DNSlookups. It d
are used, you must pr

macro istheinit

Chapter 2: TCP/IP Engine 85

SOCK_BUF_SI ZE

Thismacro determinesthe size of the socket buffers. A TCP socket will havetwo buffers
of size SOCK_BUF_SI ZE/2 for send and receive. A UDP socket will have asingle sock-
et of size SOCK_BUF_SI ZE. Both types of socketstake the sametotal amount of buffer
space.

t cp_MaxBuf Si ze

This use of this macro is deprecated in Dynamic C version 6.57 and higher; it has been
replaced by SOCK_BUF_SI ZE. It will work dightly differently in these later versions:
the buffer for the UDP socket will bet cp_MaxBuf Si ze * 2, whichistwiceaslarge
as before. This macro is being kept for backwards compatibility.

In Dynamic C versions 6.56 and earlier, this macro determines the size of the input and
output buffersfor TCP/IP sockets. Thesi zeof (t cp_Socket) will be about 200
bytes more than double this value. The optimum value for local Ethernet connectionsis
greater than the MSS (1460). You may want to lower this value to reduce RAM usage.

#define tcp_MaxBuf Si ze 600
#use "dcrtcp.lib"

86

TCP/IP User's Manual

Server Utility Library 3

The server utility library, ZSERVER. LI B, contains the structures, functions, and constants to
allow HTTP (Hypertext Transfer Protocol) and FTP (File Transfer Protocol) servers to share data
and user authentication information while running concurrently.

HTML form functionality isincluded in ZSERVER. LI B.

3.1 Data Structures for Zserver.lib
There are several data structuresin this library of interest to developersof HTTP or FTP servers.

3.1.1 ServerSpec Structure
A filetransfer server has accessto alist of objects: files, functions and variables. Thislist is
defined asaglobal array in ZSERVER. LI B.

Server Spec server_spec[SSPEC_MAXSPEC] ;
Throughout this manual, this array will be called the TCP/IP servers' object list.

3.1.2 ServerAuth Structure
ZSERVER. LI B also definesaglobal array that isalist of user name/password pairs.

Server Aut h server _aut h] SAUTH _MAXUSERS] ;
Throughout this manual, this array will be called the TCP/IP userslist.

3.1.3 FormVar Structure

An array of For nVar s represent the variablesin an HTML form. The developer will
declare an array of these structures, with the size needed to hold al variables for a particu-
lar form. The For nvar structure contains:

* A server _spec index that references the variable to be modified. Thisistheloca
tion of the form variablein the TCP/IP servers object list.

* Anintegrity-checking function pointer that ensures that the variables are set to valid
values.

* High and low values (for numerical types).

* Length (for the string type, and for the maximum length of the string representations
of values).

* A Pointer to an array of values (for when the value must be one of a specific, and
probably short, list).

The developer can specify whether she wants the variable to be set through a text entry
field or a pull-down menu, and if the variable should be considered read-only.

Chapter 3: Server Utility Library 87

ThisFor nvar array isplaced in aSer ver Spec structure using the function
sspec_addf orm Ser ver Spec entries that represent variables will be added to the

For mvar array using sspec_addf v. Properties (e.g., the integrity-checking properties)
for these For mvar entries can be set with various other functions. Hence, thereis alevel
of indirection between the variablesin the forms and the actual variablesthemselves. This
allows the same variable to be included in multiple forms with different ranges for each
form, and perhaps be read-only in one form and modifiable in another.

3.2 Constants Used in Zserver.lib

The constants in this section are values assigned to the fields of the structures Ser ver Spec and
Ser ver Aut h. They are used in the functions described in Section 3.4, some as function parame-
ters and some as return values.

3.2.1 ServerSpec Type Field
Thisfield describes the abjects in the TCP/IP servers' object list.

SSPEC_ERROR /| Error condition

SSPEC FI LE /| Dataresidesin afile

SSPEC FSFI LE /| Thedataresidesin afile systemfile
SSPEC FORM /1 Set of modifiable variables

SSPEC FUNCTI ON // Daaisafunction

SSPEC ROOTFI LE // Dataresidesinroot memory
SSPEC_UNUSED

SSPEC VARI ABLE // Dataisavariable (for HTTP)
SSPEC XMEMFI LE // Dataresidesin extended memory
SSPEC _ROOTVAR /| Dataisavariablein root memory
SSPEC_XMEMVAR /| Dataisavariablein xmem

3.2.2 ServerSpec Vartype Field
If the object isavariable, then thisfield will tell you what type of variableit is:

I NT8, | NT16, | NT32, PTR16, FLOAT32

3.2.3 Servermask field
The type of server (HTTP and/or FTP) that has access to a particular data structure is determined
by the servermask field. Both Ser ver Spec and Ser ver Aut h have thisfield. It must be set
when adding the structure to its array. The default is that no server has access. ser ver nask can
be one of the following, or any bitwise inclusive OR of these values:

SERVER _FTP

SERVER HTTP
SERVER _USER /[l for use with the flash file system

3.2.4 Configurable Constants
These constants define system limits on various data lengths and array sizes.

88 TCP/IP User's Manual

SSPEC_MAXNANME
Maximum length of stringsin aSer ver Spec structure entry. Default is 20.

SSPEC_MAXSPEC

Sets the maximum number of entriesin the global array, ser ver _spec. HTTP_MAXRANMSPEC
(from HTTP. LI B) should override SSPEC_MAXSPEC. If you attempt to use both you may not
get the desired results, therefore, the use of HTTP_ MAXRAMSPEC should be deprecated. If both
HTTP_MAXRANMSPEC and SSPEC MAXSPEC are not defined, SSPEC MAXSPEC defaults to 10.

SSPEC_XMEMVARLEN

Definesthe size of the stack-allocated buffer used by sspec_r eadvari abl e() whenreading a
variablein xmem. It defaultsto 20.

SAUTH_MAXNANE
Maximum length of stringsin Ser ver Aut h structure. Default is 20.

SAUTH_NMAXUSERS
Maximum number of users for a TCP/IP userslist. Default is 10.

3.3 HTML Forms

Defining FORM_ERROR_BUF isrequired to use the HTML form functionality in Zser ver . | i b.
The value assigned to this macro is the number of bytes to reserve in root memory for the buffer used
for form processing. This buffer must be large enough to hold the name and value for each variable,
plus four bytes for each variable.

Anarray of type For miVar must be declared to hold information about the form variables. Be sure to
allocate enough entriesin the array to hold al of the variables that will go in the form. If more forms
are needed, then more of these arrays can be allocated. Please see Section 4.3.4 on page 152 for an
example program.

Chapter 3: Server Utility Library 89

3.4 Functions

saut h_adduser

i nt saut h_adduser (char* usernanme, char* password,
server mask) ;

DESCRIPTION
Adds auser to the TCP/IP userslist.

PARAMETERS
user nane Name of the user.
passwor d Password of the user.

wor d

server mask Bitmask representing valid servers (e.g. SERVER_HTTP,

SERVER _FTP).

RETURN VALUE
- 1: Failure;

>=0: Success; index in TCP/IP userslist (id passed to saut h_get user nanme()).

LIBRARY
ZSERVER. LI B

SEE ALSO

saut h_aut henticate, sauth_getwiteaccess,
sauth_setwiteaccess

90

TCP/IP User's Manual

saut h_aut henti cate

i nt

saut h_aut henticate(char* usernanme, char* password,
server);

DESCRIPTION

Authenticate a user.

PARAMETERS
user nane Name of user.
passwor d Password for the user.
server The server for which thisfunction is authenticating (e.g.

SERVER_HTTP, SERVER FTP).

RETURN VALUE

- 1: Failure, user not valid.
>=0: Success, array index of the Ser ver Aut h structure for authenticated user.

LIBRARY

ZSERVER. LI B

SEE ALSO

saut h_adduser

wor d

Chapter 3: Server Utility Library

91

saut h_get user nane
char* sauth_getusernane(int uid);

DESCRIPTION

Gets a pointer to user name fromthe Ser ver Aut h structure.

PARAMETERS

ui d Theuser'sid, i.e., thearray index in the TCP/IP usersllist.

RETURN VALUE

NULL: Failure;
INULL: Success, pointer to the user name string on success.

LIBRARY
ZSERVER. LI B

See also
sspec_get user nanme

sauth_getwiteaccess
int sauth_getwriteaccess(int sauth);

DESCRIPTION
Checks whether or not a user has write access.

PARAMETERS

saut h Index of the user in the TCP/IP userslist.

RETURN VALUE

0: User does not have write access;
1: User has write access
- 1: Failure.

LIBRARY
ZSERVER. LI B

SEE ALSO
sauth_setwriteaccess

92

TCP/IP User's Manual

sauth_setwiteaccess
int sauth_setwriteaccess(int sauth, int witeaccess);

DESCRIPTION
Sets the write accessibility of auser.

PARAMETERS
saut h Index of the user in the TCP/IP userslist.
writeaccess Set to 1 to give write access, 0 to deny write access.

RETURN VALUE

0: Success
- 1: Failure

LIBRARY
ZSERVER. LI B

SEE ALSO

sauth_getwriteaccess

Chapter 3: Server Utility Library

93

sspec_addf orm

i nt sspec_addform(char* nanme, FornVar* form int fornsize, word
server mask) ;

DESCRIPTION

Addsaform (set of modifiable variables) to the TCP/IP servers object list. Thisfunction
iscurrently only useful for the HTTP server.

PARAMETERS
name Name of the new form.
form Pointer to the form array. Thisisauser-defined array to hold infor-
mation about form variables.
formsize Size of theform array

server mask Bitmask representing valid servers (currently only useful with
SERVER _HTTP)

RETURN VALUE

>=0: Success; location of formin TCP/IP servers' object lit;
- 1: Falled to add form

LIBRARY
ZSERVER. LI B

SEE ALSO

sspec_addfsfil e, sspec_addfunction, sspec_addrootfile,
sspec_addvari abl e, sspec_addxnenvar, sspec_addxmenfile
sspec_al i asspec, sspec_addfv

94 TCP/IP User's Manual

int sspec_addfsfile(char* nanme, byte filenum word servermask);

DESCRIPTION
Addsafilelocated in the file system to the TCP/IP servers' object list.

PARAMETERS

nane Name of the new

Chapter 3: Server Utility Library 95

sspec_addf uncti on

i nt sspec_addfunction(char* name, void (*fptr)(), word
server mask) ;

DESCRIPTION

Adds afunction to the list of objects recognized by the server. Thisfunction is currently
only useful for HTTP servers.

PARAMETERS
name Name of the function.
(*ftpr)() Pointer to the function.

server mask Bitmask representing servers for which this function will be vaid
(currently only useful with SERVER_HTTP).

RETURN VALUE

- 1: Failure;
>=0: Success, location of the functioninthe TCP/IP servers' object list.

LIBRARY
ZSERVER. LI B

SEE ALSO

sspec_addform sspec_addfsfile, sspec_addrootfile,
sspec_addvari abl e, sspec_addxnenfile, sspec_aliasspec

sspec_addfv
int sspec_addfv(int form int var);

DESCRIPTION
Addsavariableto aform.

PARAMETERS
form Index of the form in the TCP/IP servers' object list.
var Index of the variablein the TCP/IP servers object list.

RETURN VALUE
- 1: Failure;
>=0: Success; next available index into the For nVar array.
LIBRARY
ZSERVER. LI B

96 TCP/IP User's Manual

sspec_addrootfile

int sspec_addrootfile(char* nane, char* fileloc, int len, word
server mask) ;

DESCRIPTION
Addsafilethat islocated in root memory to the TCP/IP servers' object list.

PARAMETERS
name Name of the new file.
fileloc Pointer to the beginning of thefile.
I en Length of thefilein bytes.

server mask Bitmask representing serversfor which thisentry will bevalid (e.g.
SERVER_HTTP, SERVER_FTP).

RETURN VALUE

- 1: Failure;
>=0: Success, location of thefilein the TCP/IP servers' object list.

LIBRARY
ZSERVER. LI B

SEE ALSO

sspec_addfsfil e, sspec_addxmenfile, sspec_addvari able,
sspec_addfunction sspec_addform sspec_aliasspec

Chapter 3: Server Utility Library 97

sspec_addvari abl e

i nt sspec_addvari abl e(char* nanme, void* variable, word type,
char* format, word servermask);

DESCRIPTION
Adds avariable to the TCP/IP servers' object list. Thisfunction is currently only useful
for the HTTP server.
PARAMETERS
name Name of the new variable.
vari abl e Address of actual variable.
type Type of thevariable (e.g., | NT8, 1 NT16, PTRL16, etc.).
f or mat Output format of the variable.

server mask Bitmask representing servers for which this function will be vadid
(currently only useful with SERVER_HTTP).

RETURN VALUE

- 1: Failure;
>=0: Success, the location of the variable in the TCP/IP servers' object list.

LIBRARY
ZSERVER. LI B

SEE ALSO

sspec_addfsfil e, sspec_addrootfile, sspec_addxmenfile,
sspec_addfuncti on sspec_addform sspec_aliasspec

98 TCP/IP User's Manual

sspec_addxmenfil e

i nt sspec_addxnenfil e(char* name, long fileloc, word
server mask) ;

DESCRIPTION
Addsafile, located in extended memory, to the TCP/IP servers' object list.

PARAMETERS
nanme Name of the new file.
fileloc Location of the beginning of the file. The first 4 bytes of the file
must represent the length of thefile (#xi npor t doesthisautomat-
icaly).

server mask Bitmask representing serversfor which thisentry will bevalid (e.g.
SERVER_HTTP, SERVER_FTP).

RETURN VALUE

- 1: Failure;
>=0: Success, the location of the filein the TCP/IP servers' object list.

LIBRARY
ZSERVER. LI B

SEE ALSO

sspec_addfsfil e, sspec_addrootfile, sspec_addvari able,
sspec_addxmemvar, sspec_addfunction, sspec_addf orm
sspec_al i asspec

Chapter 3: Server Utility Library

99

sspec_addxnenmvar

i nt sspec_addxnmenvar (char* name, |ong variable, word type,
char* format, word servermask);

DESCRIPTION

Add avariable located in extended memory to the TCP/IP servers' object list. Currently,
thisfunction isuseful only for the HTTP server.

PARAMETERS
name Name of the new variable.
vari abl e Address of the variable in extended memory.
type Variabletype (e.g., | NT8, 1 NT16, PTR16, etc.).
f or mat Output format of the variable.

server mask Bitmask representing valid servers (currently only useful with
SERVER_HTTP).

RETURN VALUE

- 1: Failure;
>=0: Success, the location of the variable in the TCP/IP servers' object list.

LIBRARY
ZSERVER. LI B

SEE ALSO

sspec_addfsfil e, sspec_addrootfile, sspec_addvari able,
sspec_addfunction, sspec_addform sspec_addxmenfile,
sspec_al i asspec

100 TCP/IP User's Manual

sspec_al i asspec
i nt sspec_aliasspec(int sspec, char* nane);

DESCRIPTION

Creates an diasto an existing object in the TCP/IP servers' object list. Please note, this
isNOT adeep copy. That is, any file, variable, or form that the alias references will be
the same copy of the file, variable, or form that already existsin the TCP/IP servers' ob-
ject list. This should be called only when the original entry has been completely set up.

PARAMETERS
sspec Location of the object in the TCP/IP servers' object list that will be
aliased.
name Namefield of the Ser ver Spec structure that will be aliased.

RETURN VALUE
- 1: Failure;
>=0: Success; return location of alias, i.e., new index

LIBRARY
ZSERVER. LI B

See also

sspec_addform sspec_addfsfile, sspec_addfunction,
sspec_addrootfil e, sspec_addvariable, sspec_addxnenfile

Chapter 3: Server Utility Library

101

sspec_checkaccess
i nt sspec_checkaccess(int sspec, int uid);

DESCRIPTION

Thisfunction checks whether or not the specified user has permission to access the spec-
ified object in the TCP/IP servers' object list.

PARAMETERS
sspec Location of abject in TCP/IP servers' object list.
uid Location of the user in the TCP/IP userslist.

RETURN VALUE

0: User does not have access;
1: User has access
- 1: Failure.

LIBRARY
ZSERVER. LI B

SEE ALSO
sspec_needsaut henti cati on

sspec_findfv
int sspec_findfv(int form char* varnane);

DESCRIPTION
Finds the index in the array of type For niar of aform variablein agiven form.

PARAMETERS
form Location of theform in the TCP/IP servers object list.
var nane Name of the variable to find.

RETURN VALUE

- 1: Failure;
>=0: Success; the index of the form variablein the array of type For mvar .

LIBRARY
ZSERVER. LI B

102 TCP/IP User's Manual

sspec_findnane
int sspec_findnanme(char* name, word server);

DESCRIPTION

Findsthelocation of the object associated with nanme and returnsthelocation (index into
theser ver _spec array) of the abject if the server isallowed accesstoit. (Accessis
determined by theser ver mask field in the Ser ver Spec structure for the object.)

PARAMETERS
name Name to search for in the TCP/IP servers’ object list.
server The server making the request (e.g. SERVER _HTTP).

RETURN VALUE

- 1: Failure;
>=0: Success, location of the object in the TCP/IP servers' object list.

LIBRARY
ZSERVER. LI B

SEE ALSO
sspec_findnextfile

Chapter 3: Server Utility Library

103

sspec_findnextfile
int sspec_findnextfile(int start, word server);
DESCRIPTION

Findsthefirst Ser ver Spec structureinthe array, at or following the structure indexed
by st art, thatisassociated with afile and that is accessible by the server.

PARAMETERS
start The array index at which to begin the search.
server The server making the request (e.g. SERVER _HTTP).

RETURN VALUE
- 1: Failure;
>=0: Success, index of requested Ser ver Spec structure.

LIBRARY
ZSERVER. LI B

SEE ALSO

sspec_findname

sspec_getfilel oc
| ong sspec_getfileloc(int sspec);

DESCRIPTION

Getsthelocationinmemory or inthefile system of afilerepresented by aSer ver Spec
structure. Note that the location of the fileis returned as along; the return value should
be cast to the appropriate type (char * for aroot file, Fi | eNumfor the file system) by
theuser. sspec_getfil et ype() canbeusedto find thefile type.

PARAMETERS
sspec Index into the array of Ser ver Spec structures.

RETURN VALUE

>=0: Success, location of thefile;
- 1: Failure.

LIBRARY
ZSERVER. LI B

SEE ALSO
sspec_getfiletype, sspec_getlength

104 TCP/IP User's Manual

sspec_getfil etype
word sspec_getfiletype(int sspec);

DESCRIPTION

Getsthe type of afile represented by a Ser ver Spec structure.

PARAMETERS

sspec Index into the array of Ser ver Spec structures.

RETURN VALUE

SSPEC _ERROR: Failure;
I =SSPEC_ERROR: Success, the type of file.

LIBRARY
ZSERVER. LI B

SEE ALSO

sspec_getfilel oc, sspec_gettype

sspec_getforntitle
char* sspec_getforntitle(int form;

DESCRIPTION
Getsthe title for an automatically generated form.

PARAMETERS

form server _spec index of theform.

RETURN VALUE

NULL on failure;
I NULL on success, title string.

LIBRARY
ZSERVER. LI B

Chapter 3: Server Utility Library

105

sspec_getfunction
voi d* sspec_getfunction(int sspec);
DESCRIPTION

Accessesthearray of Ser ver Spec structuresto get apointer to the requested function.

PARAMETERS

sspec Index into the array of Ser ver Spec structures.

RETURN VALUE

NULL on failure
INULL on success, pointer to requested function.

LIBRARY
ZSERVER. LI B

SEE ALSO

sspec_addf uncti on

106 TCP/IP User's Manual

sspec_getfvdesc
char* sspec_getfvdesc(int form int var);

DESCRIPTION
Gets the description of avariablethat is displayed in the HTML form table.

PARAMETERS
form server _spec index of theform.
var Index (into the For mVar array) of the variable.

RETURN VALUE

NULL on failure;
I' NULL on success, description string.

LIBRARY
ZSERVER. LI B

Chapter 3: Server Utility Library 107

sspec_getfventrytype
int sspec_getfventrytype(int form int var);

DESCRIPTION
Gets the type of form entry element that should be used for the given variable.

PARAMETERS
form server _spec index of theform.
var Index (into the For nmVar array) of the variable.

RETURN VALUE

- 1: Failure;
Type of form entry element on success:
HTM._FORM _TEXT isatext box.
HTM._FORM PULLDOWN isa pull-down menu.

LIBRARY
ZSERVER. LI B

sspec_getfvlen

int sspec_getfvlen(int form int var);

DESCRIPTION
Getsthelength of aform variable (the maximum length of the string representation of the
variable).
PARAMETERS
form server _spec index of theform.
var Index (into the For mVar array) of the variable.

RETURN VALUE
- 1: Failure
>0: Success, length of the variable.

LIBRARY
ZSERVER. LI B

108 TCP/IP User's Manual

sspec_get fvnane
char* sspec_getfvnanme(int form int var);

DESCRIPTION
Gets the name of avariable that is displayed in the HTML form table.

PARAMETERS
form server _spec index of theform.
var Index into the array of For nVar structures of the variable.

RETURN VALUE

NULL on failure;
I NULL, name of the form variable.

LIBRARY
ZSERVER. LI B

sspec_getfvnum
int sspec_getfvnum(int form;
DESCRIPTION
Gets the number of variablesin aform.

PARAMETERS

form server _spec index of theform.

RETURN VALUE

- 1: Failure;
>=0: Success, number of form variables.

LIBRARY
ZSERVER. LI B

Chapter 3: Server Utility Library

109

sspec_get f vopt
char* sspec_getfvopt(int form int var, int option);

DESCRIPTION

Getsthe numbered option (starting from 0) of theform variable. Thisfunctionisonly val-
idif the form variable has the option list set.

PARAMETERS
form server _spec index of theform.
var Index into the array of For nmivar structures of the variable.
opti on Index of the form variable option.

RETURN VALUE

NULL on failure;
I' NULL on success, form variable option.

LIBRARY
ZSERVER. LI B

sspec_getfvoptlistlen
int sspec_getfvoptlistlen(int form int var);
DESCRIPTION

Gets the length of the options list of the form variable. Thisfunction is only valid if the
form variable has the option list set.

PARAMETERS
form server _spec index of theform.
var Index (into the For mVar array) of the variable.

RETURN VALUE

- 1: Failure;
>0: Success, length of the options list.

LIBRARY
ZSERVER. LI B

110 TCP/IP User's Manual

sspec_getfvreadonly
int sspec_getfvreadonly(int form int var);

DESCRIPTION
Checksif aform variableis read-only.

PARAMETERS
form server _spec index of theform.
var Index (into the For mVar array) of the variable.

RETURN VALUE

0: Read-only;
1: Not read-only;
- 1: Failure.

LIBRARY
ZSERVER. LI B

sspec_getfvspec
int sspec_getfvspec(int form int var);

DESCRIPTION
Getstheser ver _spec index of avariablein aform.

PARAMETERS
form server _spec index of theform.
var Index into the array of For nVar structures of the variable.

RETURN VALUE

- 1: Failure;
>=0: Success, location of the form variable in the TCP/IP servers' object list.

LIBRARY
ZSERVER. LI B

Chapter 3: Server Utility Library

111

sspec_getl ength
| ong sspec_getlength(int sspec);
DESCRIPTION

Gets the length of the file associated with the specified Ser ver Spec structure.

PARAMETERS

sspec Location of filein TCP/IP servers object list.

RETURN VALUE
- 1: Failure;
>=0: Success, length of thefilein bytes.

LIBRARY
ZSERVER. LI B

SEE ALSO

sspec_readfile, sspec_getfileloc

sspec_get nane
char* sspec_get nane(int sspec);
DESCRIPTION

Accessesthearray of Ser ver Spec structuresand returnsapointer to the object’sname.

PARAMETERS

sspec Location of abject in TCP/IP servers' object list.

RETURN VALUE

NULL: Failure;
INULL: Success, pointer to name string.

LIBRARY
ZSERVER. LI B

112 TCP/IP User's Manual

sspec_getreal m
char* sspec_getreal m(i nt sspec);
DESCRIPTION
Returns the realm for the object.
PARAMETERS
sspec Location of the object in the TCP/IP servers object list.

RETURN VALUE

NULL: Failure;
INULL: Success, pointer to the realm string.

LIBRARY
ZSERVER. LI B

SEE ALSO

sspec_setrealm

sspec_gettype
word sspec_gettype(int sspec);

DESCRIPTION
Getsthetypefield of aSer ver Spec structure.

PARAMETERS
sspec Location of the object in the TCP/IP servers object list.

RETURN VALUE

SSPEC_ERROR: Failure;
type field: Success (See “ Constants Used in Zserver.lib” on page 88). For files and vari-
ables, it returns the generic type SSPEC _FI LE or SSPEC_VARI ABLE, respectively.

LIBRARY
ZSERVER. LI B

SEE ALSO

sspec_getfil etype, sspec_getvartype

Chapter 3: Server Utility Library 113

sspec_get user nane
char* sspec_getusernane(i nt sspec);
DESCRIPTION

Gets the username field of aSer ver Aut h structure,

PARAMETERS

sspec Location of user in TCP/IP userslist.

RETURN VALUE

NULL: Failure;
INULL: Success, pointer touser nane.

LIBRARY
ZSERVER. LI B

SEE ALSO

saut h_adduser, sspec_setuser

sspec_get var addr
voi d* sspec_getvaraddr (i nt sspec);
DESCRIPTION

Returns a pointer to the requested variable in the TCP/IP servers' object list.

PARAMETERS

sspec Location of the variable in the TCP/IP servers' object list.

RETURN VALUE

NULL on failure;
INULL on success, pointer to variable.

LIBRARY
ZSERVER. LI B

SEE ALSO

sspec_readvari abl e

114 TCP/IP User's Manual

word sspec_getvarkind(int sspec);

DESCRIPTION
Returnsthekind of variablerepresented by sspec (I NT8,1 NT16,1 NT32, FLOAT32,
or PTR16).

PARAMETERS
sspec Location of the variable in the TCP/IP servers' object list.

RETURN VALUE

I =0: Kind of variable;
0: Failure.

LIBRARY
ZSERVER. LI B

SEE

Chapter 3: Server Utility Library 115

sspec_needsaut henti cation
i nt sspec_needsaut hentication(int sspec);

DESCRIPTION

Checksif an object inthe TCP/IP servers' object list needs user authentication to permit
access. Thereisafield inthe Ser ver Spec structure that is an index into the array of
Ser ver Aut h structures (list of valid users). If thisfield hasavalue, accessto the object
islimited to the one user specified.

PARAMETERS

sspec Index into the array of Ser ver Spec structures.

RETURN VALUE

0: Does not need authentication;
1: Does need authentication;
- 1: Failure.

LIBRARY
ZSERVER. LI B

SEE ALSO
sspec_getreal m

116 TCP/IP User's Manual

sspec_readfile

int sspec_readfile(int sspec, char* buffer, long offset, int
l en);

DESCRIPTION
Read afilerepresented by thesspec index intobuf f er, tarting at of f set , and only
copying| en bytes. For xmem files, this function automatically skipsthe first 4 bytes.
Hence, an offset of 0 marks the beginning of the file contents, not thefile length.

PARAMETERS
sspec Index into the array of Ser ver Spec structures.
buf fer The buffer to put the file contents into.
of f set The offset from the start of thefile, in bytes, at which copying
should begin.
I en The number of bytes to copy.

RETURN VALUE

- 1: Failure;
>=0: Success, number of bytes copied.

LIBRARY
ZSERVER. LI B

SEE ALSO
sspec_getlength, sspec_getfileloc

Chapter 3: Server Utility Library

117

sspec_readvari abl e
i nt sspec_readvariabl e(int sspec, char* buffer);

DESCRIPTION
Formats the variable associated with the specified Ser ver Spec structure, and putsa
NUL L-terminated string representation of it in buf f er . The macro
SSPEC XMEMVARLEN (default is 20) defines the size of the stack-all ocated buffer
when reading avariable in xmem.

PARAMETERS
sspec Index into the array of Ser ver Spec structures.
buf fer The buffer in which to put the variable.

RETURN VALUE
0: Success;
- 1: Failure.

LIBRARY
ZSERVER. LI B

SEE ALSO
sspec_get var addr

sSpec_renove
i nt sspec_renove(int sspec);
DESCRIPTION
Removes an object from the TCP/IP servers object list.

PARAMETERS
sspec Index into the array of Ser ver Spec structures.

RETURN VALUE

0: Success
- 1: Failure (i.e. theindex is aready unused).

LIBRARY
ZSERVER. LI B

118 TCP/IP User's Manual

sspec_restore
int sspec_restore(void);

DESCRIPTION

Restoresthe TCP/IP servers' object list and the TCP/IP userslist (and some user-speci-
fied dataif set upwithsspec_set savedat a()) from thefile system. This does not
restore the actua files and variables, but only the structures that reference them. If the
files are stored in flash, then the references will still be valid. Filesin volatile RAM and
variables must be rebuilt through other means.

RETURN VALUE

0: Success.
- 1: Failure.

LIBRARY
ZSERVER. LI B

SEE ALSO

sspec_save, sspec_setsavedata

SSpec_save
i nt sspec_save(void);

DESCRIPTION

Savesthe servers' object list and server authorization list (along with some user-specified
dataif setupwithsspec_set savedat a()) tothefilesystem. Thisdoesnot savethe
actual filesand variables, but only the structuresthat reference them. If thefilesare stored
in flash, then the references will still be valid. Filesin volatile RAM and variables must
be rebuilt through other means.

RETURN VALUE

0: Success.
- 1: Failure.

LIBRARY
ZSERVER. LI B

SEE ALSO

sspec_restore, sspec_setsavedata

Chapter 3: Server Utility Library 119

sspec_setfornmepil og
int sspec_setfornepilog(int form int function);

DESCRIPTION

Sets the user-specified function that will be called when the form has been successfully
submitted. Thisfunction can, for example, executeacgi _r edi r ect t o toredirect to
agpecific page. It should accept "HttpState* state” asan argument, return O when it isnot
finished, and 1 when it isfinished (i.e., behave like anormal CGI function).

PARAMETERS
form Index into the array of Ser ver Spec structures.
function Index into the array of Ser ver Spec structures. Thisisthereturn

value of the function sspec_addf uncti on() .

RETURN VALUE

0 : Success.
-1 : Failure.

LIBRARY
ZSERVER. LI B

SEE ALSO

sspec_addf uncti on

120 TCP/IP User's Manual

Chapter 3: Server

sspec_set fornprol og

int sspec_setfornprolog(int form int function);

DESCRIPTION

Allows a user-specified function to be caled just before form variables are updated. This
is useful for implementing locking on the form variables (which can then be unlocked in
the epilog function), so that other code will not update the variables during form pro-
cessing. The user-specified function should accept "HttpState* state" as an argument,
return O when it is not finished, and 1 when it isfinished (i.e., behave like anormal CGlI

function).
PARAMETERS
form Index into the array of Ser ver Spec structures.
function Index into the array of Ser ver Spec structures. Thisisthereturn

valueof sspec_addf uncti on().

RETURN VALUE

0: Success.
- 1: Failure.

LIBRARY
ZSERVER. LI B

SEE ALSO

sspec_addf uncti on

122 TCP/IP User's Manual

sspec_setforntitle
int sspec_setforntitle(int form char* title);

DESCRIPTION
Setsthetitle for an automatically generated form.

PARAMETERS
form server _spec index of theform.
title Title of the HTML page.

RETURN VALUE

0: Success
- 1: Failure

LIBRARY
ZSERVER. LI B

Chapter 3: Server Utility Library 123

sspec_setfvcheck
int sspec_setfvcheck(int form int var, int (*varcheck)());
DESCRIPTION

Sets afunction that can be used to check the integrity of avariable. The function should
return O if thereisno error, or 10 if thereisan error.

PARAMETERS
form server _spec index of theform.
var Index (into the For mVar array) of the variable.
var check Pointer to integrity-checking function.

RETURN VALUE

>0: Success
- 1: Failure

LIBRARY
ZSERVER. LI B

124 TCP/IP User's Manual

sspec_setfvdesc
int sspec_setfvdesc(int form int var, char* desc);

DESCRIPTION
Sets the description of avariable that is displayed in the HTML form table.

PARAMETERS
form server _spec index of theform.
var Index (into the For mVar array) of the variable.
desc Description of the variable. Thistext will display on the html page.

RETURN VALUE

0: Success
- 1: Failure

LIBRARY
ZSERVER. LI B

sspec_setfventrytype
int sspec_setfventrytype(int form int var, int entrytype);

DESCRIPTION
Sets the type of form entry element that should be used for the given variable.

PARAMETERS
form server _spec index of theform.
var Index (into the For mVar array) of the variable.
entrytype HTM._FORM_TEXT for atext box, HTM._FORM_PULLDOWNfor

apull-down menu. The default isHTML_FORM _TEXT.

RETURN VALUE

0: Success
- 1: Failure

LIBRARY
ZSERVER. LI B

Chapter 3: Server Utility Library

125

sspec_setfvfl oatrange

int sspec_setfvfloatrange(int form int var, float |ow fl oat
hi gh) ;

DESCRIPTION
Setstherange of afloat.

PARAMETERS
form server _spec index of theform.
var Index (into the For mVar array) of the variable.
| ow Minimum value of the variable.
hi gh Maximum value of the variable.

RETURN VALUE

0: Success
- 1: Failure

LIBRARY
ZSERVER. LI B

sspec_setfvlen

int sspec_setfvlen(int form int var, int len);

DESCRIPTION
Setsthe length of aform variable (the maximum length of the string representation of the
variable).
PARAMETERS
form server _spec index of theform.
var Index (into the For mVar array) of the variable.
l en Length of the variable.

RETURN VALUE

0: Success
- 1: Failure

LIBRARY
ZSERVER. LI B

126 TCP/IP User's Manual

int sspec_setfvnanme(int form int var, char* nane);

DESCRIPTION
Setsthe name of avariable that is displayed inthe HTML form table.

PARAMETERS
form server _spec index of theform.
var Index (into the For mVar array) of the variable.
name Display name of the variable.

RETURN VALUE

0: Success
- 1: Failure

LIBRARY
ZSERVER. LI B

int sspec_setfvoptlist(int form int var, char* list[],

listlen);

DESCRIPTION
Sets an enumerated list of possible values for astring variable.

PARAMETERS
form server _spec index of theform.
var Index (into the For mVar array) of the variable.
list[] Array of string values that the variable can assume.
listlen Length of the array.

RETURN VALUE

0: Success
- 1: Failure

LIBRARY
ZSERVER. LI B

i nt

Chapter 3: Server Utility Library

127

sspec_setfvrange
int sspec_setfvrange(int form int var, long low, |ong high);

DESCRIPTION
Setstherange of an integer.

PARAMETERS
form server _spec index of theform.
var Index (into the For nmVar array) of the variable.
| ow Minimum value of the variable.
hi gh Maximum value of the variable.

RETURN VALUE

0: Success
- 1: Failure

LIBRARY
ZSERVER. LI B

sspec_setfvreadonly
int sspec_setfvreadonly(int form int var, int readonly);

DESCRIPTION
Sets the form variable to be read-only.

PARAMETERS
form server _spec index of theform.
var Index (into the For mVar array) of the variable.
readonly 0 for read/write (thisisthe default);
1 for read-only.
RETURN VALUE
0: Success
- 1: Failure
LIBRARY
ZSERVER. LI B

128 TCP/IP User's Manual

sspec_setrealm
int sspec_setreal mint sspec, char* realm;

DESCRIPTION
Setsther eal mfield of aSer ver Spec structure for HT TP authentication purposes.

PARAMETERS
sspec Index into the array of Ser ver Spec structures.
real m Name of the realm.

RETURN VALUE

0: Success
- 1: Failure

LIBRARY
ZSERVER. LI B

SEE ALSO

sspec_getreal m

Chapter 3: Server Utility Library 129

sspec_set savedat a

i nt sspec_setsavedata(char* data, unsigned long |en, void*
fptr);

DESCRIPTION

Sets user-supplied data that will be saved in addition to the spec and user authentication
tableswhen sspec_save() iscaled.

PARAMETERS
dat a Pointer to location of user-supplied data.
I en Length of the user-supplied datain bytes.
fptr Pointer to afunction that will be called when the user-supplied data

has been restored

RETURN VALUE

0: Success
- 1: Failure

LIBRARY
ZSERVER. LI B

SEE ALSO
sspec_save,sspec_restore

130 TCP/IP User's Manual

sspec_set user
int sspec_setuser(int sspec, int uid);

DESCRIPTION
Setsthe user (owner) of aSer ver Spec structure.

PARAMETERS
sspec Index into the array of Ser ver Spec structures.
uid Index into the array of Ser ver Aut h structures (identifies user).

RETURN VALUE

0: Success
- 1: Failure

LIBRARY
ZSERVER. LI B

SEE ALSO

saut h_adduser, sspec_getusername

Chapter 3: Server Utility Library

131

HTTP Server 4

AnHTTP (Hypertext Transfer Protocol) server makes HTML (Hypertext Markup Language) docu-
ments and other documents available to clients, i.e., web browsers. HTTP isimplemented by
HTTP. LI B.

4.1 HTTP Server Data Structures
There are four data structuresin HTTP. LI B of interest to developers of HTTP servers.

4.1.1 HttpSpec

The data structure Ht t pSpec contains all the files, variables, and functions the Web server has
access to. The structure Ser ver Spec from ZSERVER. LI B may be instead.

typedef struct {
word type;
char name[HTTP_MAXNAME] ;
| ong dat a;
voi d* addr;
word vartype;
char* format;
Ht t pReal n* real m
} Htt pSpec;

4.1.1.1 HttpSpec fields

type Thisfield tdlsthe server if the entry isafile, variable or function
(HTTPSPEC _FI LE, HTTPSPEC_VARI ABLE or
HTTPSPEC_FUNCTI ON, respectively).

name Thisfield specifies aunique name for referring to the entry. The
Web server recognizes”/ i ndex. ht ml ” astheentity that matches
“http://someurl.conlindex. htm”, anddéiverstheen-
try’s content based on the value of t ype (thefirst field).

dat a Thethird field is the physical address of the entity.

addr Thefourth field isashort pointer to the entity. Either the third field
or the fourth field isvalid, not both. All files must use the physical
address, variables and functions use the short pointer.

vartype Thisfidd describesthetype of variable. Supportedtypesare: | NT8
I NT16, PTR16, | NT32, and FLOAT.

f or mat Theformat field describesthepr i nt f format specifier usedtodis
play the variable.

realm Thisfield isthe name and password required to access the entity.

Chapter 4: HTTP Server 133

4.1.2 HttpType

The structure Ht t pType associates a file extension with aMIME type (Multipurpose Internet Mail
Extension) and a function which handles the MIME type. If the function pointer givenis NULL, then
the default handler (which sends the content verbatim) is used.

typedef struct {

char extension[10];

char type[20];

int (*fptr)(/* HtpState* */);
} HtpType;

4.1.3 HttpRealm

The structure Ht t pReal mholds user-I1D and password pairs for partitions called realms. These
realms allow the protected resources on a server to be partitioned into a set of protection spaces, each
with its own authentication scheme and/or authorization database.

typedef struct {
char user nanme[HTTP_MAXNAME] ;
char passwor d[HTTP_MAXNAME] ;
char real n{ HTTP_MAXNAME] ;

} HttpReal m

HTTP/1.0 Basic authentication is used. This scheme is not a secure method of user authentication
across an insecure network (e.g., the Internet). HTTP/1.0 does not, however, prevent additional
authentication schemes and encryption mechanisms from being employed to increase security.

Inthe Ht t pSpec structure, there is a pointer to a structure of type Ht t pReal m To password-pro-
tect the entity, add the name, password, and realm desired. If you do not want to password-protect the
entity, leave the realm pointer in the Ht t pSpec structure NULL.

134 TCP/IP User's Manual

4.1.4 HttpState
Use of this structureis necessary for CGI functions. Some of the fields are off-limits to devel opers.

typedef struct {
tcp_Socket s;

/* State information */
int state, substate, subsubstate, nextstate, |aststate;

/* File referenced */

Ht t pSpecAl | spec, subspec;
HitpType *type;

int (*handler)(), (*exec)();

/* rx/tx state variables */

| ong of f set;

| ong | engt h;

long filelength, subfilelength;
| ong pos, subpos;

long tineout, |ong main_timnmeout;
char buf fer[HTTP_MAXBUFFER] ;
char *p;

/[* http request and header info */
char nmet hod;

char url [HTTP_MAXURL] ;

char version;

char connecti on;

char content _type[40];

| ong content | engt h;

char has _form

char finish form

char user nanme[HTTP_MAXNAME] ;
char passwor d[HTTP_MAXNAME] ;
char cooki e[HTTP_MAXNAME] ;

/* other - don't touch */

i nt headerl en;

i nt headerof f;

char tag[HTTP_MAXNAME] ;

char val ue[HTTP_MAXNAME] ;
} HttpState;

Chapter 4: HTTP Server 135

4.1.4.1 HttpState Fields
The fields discussed here are available for developersto use in their application programs.

s Thisisthe socket associated with the given HTTP server. A devel-
oper can use thisin a CGI function to output dynamic data. Any of
the TCP functions can be used.

subst at e

subsubst at e These are intended to be used to hold the current state of a state ma-

chinefor aCGl function. Thatis, if aCGlI function relinquishes con-
trol back to the HTTP server, then the values in these variables will
be preserved for thenext ht t p_handl er () call, in which the
CGl function will be called again. These variables areinitialized to
0 beforethe CGlI functioniscalled for thefirst time. Hence, thefirst
state of a state machine using substate should be 0.

ti meout Thisvalue can be used by the CGI function to implement aninterna
timeout.
mai n_ti meout Thisvalue holdsthe timeout that is used by the web server. Theweb

server checks against thistimeout on every call of

htt p_handl er () . Whentheweb server changes states, it resets
mai n_t i meout . When it has stayed in one state for too long, it
cancelsthe current processing for the server and goes back to theini-
tial state. Hence, a CGI function may want to reset thistimeout if it
needs more processing time (but care should be taken to make sure
that the server is not locked up forever). This can be achieved like
this:

state->mmin_tineout = set_timeout (HTTP_TI MEQUT) ;
HTTP_TI MEQUT isthe number of secondsuntil theweb server will
time out. It is 16 seconds by default.

buffer[] A buffer that the developer can useto put data to be transmitted over
the socket. It is of size HTTP_MAXBUFFER.

p Pointer into the buffer given above.

net hod This should be treated as read-only. It holds the method by which

the web request was submitted. Thevalueis either
HTTP_METHOD_GET or HTTP_METHOD_POST, for the GET
and POST request methods, respectively.

url[] This should be treated as read-only. It holdsthe URL by which the
current web request was submitted.

Ver sion; This should be treated as read-only. This holds the version of the
HTTP request that was made. It can be HTTP_VER_09,
HTTP_VER 10, or HTTP_VER 11 for 0.9, 1.0, or 1.1 requests,
respectively.

136 TCP/IP User's Manual

content _type[] Thisshouldbetreated asread-only. Thisbuffer holdsthevaluefrom
the Content-Type header sent by the client.

content | ength; Thisshould betreated as read-only. Thisvariable holdsthe length
of the content sent by the client. It matches the value of the Content-
Length header sent by the client.

user nane[| Read-only buffer hasusername of the user making therequest, if au-
thentication took place.

password[] Read-only buffer has password of the user making the request, if au-
thentication took place.

cooki e[] Read-only buffer contains the value of the cookie "DCRABBIT"
(seehtt p_set cooki e() for moreinformation).

header| en

header of f These variables can be used in conjunction to cause the web server

to flush datafrom the buf f er [] array in the HttpState structure.
header | en should be set to the amount of datain buffer[],
and header of f should be set to 0 (to indicate the offset into the
array). When the CGlI function is called the next time, the datain

buf fer[] will beflushed to the socket.

4.2 Configuration Constants
The following macros are available in HTTP. LI B:

HTTP_MAXNANVE

Thisisthe maximum length for anameinthe Ht t pSpec structure. This defaultsto 20 characters.
Without overriding this value, the maximum length of any name is 19 characters because one charac-
ter is used for the NULL termination.

HTTP_MAXRAMSPEC

Thisisthe maximum number of Ht t pSpec entriesthat can be added at runtime. This macro over-
rides SSPEC_MAXSPEC.

HTTP_MAXSERVERS

Thisisthe maximum number of HTTP servers listening on port 80. The default istwo. You may
increase this value to the maximum number of independent entities on your page. For example, for a
Web page with four pictures, two of which are the same, set HTTP_MAXSERVERS to four: one for
the page, one for the duplicate images, and one for each of the other two images. By default, each
server takes 2500 bytes of RAM. This RAM usage can be changed by the macro SOCK_BUF_SI ZE
(ort cp_MaxBuf Si ze which is deprecated as of Dynamic C ver. 6.57). Another option isto use the
t cp_reserveport function and asmaller number of sockets.

Chapter 4: HTTP Server 137

TI MEZONE

This macro specifies the distance in hours you are from Greenwich Mean Time (GMT), which is5
hours ahead of Eastern Standard Time (EST). The default TI MEZONE is -8, which represents Pacific
Standard Time. You can usethet m wr function to set the clock to the correct value. If you lose
power and don't have the battery-backup option, the time will need to be reset.

4.3 Sample Programs

Sample programs demonstrating HTTP are in the\ Sanpl es\ Tcpi p\ Ht t p directory. Thereisa
configuration block at the beginning of each sample program. Unless you are using BOOTP/DHCP,
the macros in this block need to be changed to reflect your network settings. For most HTTP pro-
grams, you will be concerned with TI MEZONE and the | P address macros. MY_| PADDRESS,

MY _NETMASK, MY_GATEWAY.

4.3.1 Serving Static Web Pages

The sample program, St at i c. ¢, initializesHTTP. LI B and then sets up a basic static web page. It
is assumed you are on the same subnet as the controller. The codefor St at i ¢. ¢ isexplained in the
following pages.

From Dynamic C, compile and run the program. You will see the LNK light on the board come on
after a couple of seconds. Point your internet browser at the controller (e.g., http://10.10.6.100/). The
ACT light will flash a couple of times and your browser will display the page.

138 TCP/IP User's Manual

// Static.c

#def i ne MY_| P_ADDRESS "10. 10. 6. 100"
#def i ne MY_NETMASK " 255. 255. 255. 0"
#defi ne TI MEZONE -8

#mrenmap xmem
#use "dcrtcp.lib"
#use "http.lib"

#xi nport "sanpl es/tcpi p/ http/pages/static.htm " index_htm
#xi nport "sanpl es/tcpi p/http/ pages/rabbitl.gif" rabbitl gif

const HttpType http_ types[] =

{
{ ".htm", "text/htm ", NULL},
{ ".gif", "image/gif", NULL}
i
const HttpSpec http flashspec[] =
{
{HTTPSPEC FILE, "/", index_htm, NULL, 0, NULL, NULL},
{HTTPSPEC FI LE, "/index.htm ", index_htm, NULL, O, NULL, NULL},
{HTTPSPEC FILE, “/rabbitl.gif", rabbitl gif, NULL, O, NULL, NULL},
I
mai n()
{
sock_init(); // Initializes the TCP/IP stack
http_init(); // Initializes the web server
tcp_reserveport (80);
while (1) {
htt p_handl er () ;
}
}

This program servesthest ati c. ht i fileandther abbi t 1. gi f fileto any user contacting the
controller. If you want to change the file that is served by the controller, modify thislinein
Static.c:

#xi nport "sanpl es/tcpi p/ http/pages/static.htm " index_htm

4.3.1.1 Adding Files to Display

Adding additional filesto the controller to serve asweb pagesis dightly more complicated. First, add
an #xi nmpor t line with the filename as the first parameter, and a symbol that referencesitin
Dynamic C as the second parameter.

#xi nport "sanpl es/tcpi p/ http/pages/static.htm " index_htm
#xi nport "sanpl es/tcpi p/ http/ pages/newfile.htm" newfile htn

Chapter 4: HTTP Server 139

Next, find theselinesinSt ati c. c:

Ht t pSpec http_fl ashspec[] =

{
{HTTPSPEC FILE, "/", index_htm, NULL, O, NULL, NULL},
{HTTPSPEC FI LE, "/index.htm ", index_htni, NULL, O, NULL, NULL},
{HTTPSPEC FILE, "/newfile.htm ", index_htm, NULL, 0, NULL, NULL},
{HTTPSPEC FILE, "/rabbitl.gif", rabbitl gif, NULL, 0, NULL, NULL},
H

Insert the name of your new file, preceded by “/”, into this structure, using the same format as the
other lines. Compile and run the program. Open up your browser to the new page (e.g.
“http://10.10.6.100/newfile.html”), and your new page will be displayed by the browser.

4.3.1.2 Adding Files with Different Extensions

If you are adding afile with an extension that is not html or gif, you will need to make an entry in the

Ht t pType structure for the new extension. The first field is the extension and the second field

describes the MIME type for that extension. You can find alist of MIME types at:
ftp://ftp.isi.edu/in-notes/ianalassignnents/medi a-types/nedi a-types

In the media-types document located there, the text in the type column would precede the“/”, and the
subtype column would directly follow. Find the type subtype entry that matches your extension and
addittothehtt p_t ypes table.

Htt pType http_types[] =

{ ".htm", "text/htm ", NULL},
{ ".gif", "image/gif", NULL}

4.3.1.3 Handling of Files With No Extension
Theentry “/” and files without an extension are dealt with by the handler specified in thefirst entry in
http_types[].

140 TCP/IP User's Manual

ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/media-types

4.3.2 Dynamic Web Pages Without HTML Forms

Serving a dynamic web page without the use of HTML formsis done by sample program Ssi . ¢
shown below and located in/ Sanpl es/ Tcpi p/ Ht t p. This program displays four 'lights' and
four buttons to toggle them. Users can browse to the device and change the status of the lights.

#def i ne MY_GATEWAY " 10. 10. 6. 19"
#define My_| P_ADDRESS "10.10.6. 100"
#def i ne MY_NETMASK " 255. 255. 255. 0"

#def i ne SOCK_BUF_SI ZE 2048
#def i ne HTTP_MAXSERVERS 1
#def i ne MAX_SOCKETS 1

#def i ne REDI RECTHOST MY_| P_ADDRESS
#def i ne REDI RECTTO "http: //" REDI RECTHOST "/i ndex.shtm "

#menmap xmem
#use "dcrtcp.lib"
#use "http.lib"

/*

* The source code for this programis xinported. This all ows
* us to put the line <!--#include file="ssi.c" -->in the

* file Sanpl es/ Tcpi p/ Ht t p/ Pages/ Showsrc. shtn .

*/

#xi nport "sanpl es/tcpi p/ http/pages/ssi.shtm" index_htm

#xi nport "sanpl es/tcpi p/http/ pages/rabbitl.gif" rabbitl gif

#xi nport "sanpl es/tcpi p/ http/pages/|edon.gif" |edon_gif

#xi nport "sanpl es/tcpi p/ http/ pages/|edoff.gif" |edoff gif

#xi nport "sanpl es/tcpi p/ http/pages/button.gif" button_gif

#xi nport "sanpl es/tcpi p/ http/ pages/ showsrc.shtm " showsrc_shtm
#xi nport "sanpl es/tcpip/ http/ssi.c" ssi_c

/*

* In this case the extension .shtm is the first type in
the type table. This causes the default (no extension)

* to assune the shtml handl er.

*/

const HttpType http_types[] = {
{ ".shtm", "text/htm ", shtm handler}, // ssi

{ ".htm", "text/htm ", NULL}, /] htm
{ ".cgi", "", NULL}, /1l cgi
{ ".gif", "image/gif", NULL}

i

char |edl[15];
char |ed2[15];
char |ed3[15];
char |ed4[15];

Chapter 4: HTTP Server

141

int |edltoggl e(HttpState* state)
{
if (strcnp(ledl,"ledon.gif")==0)
strcpy(ledl, "l edoff.gif");
el se
strcpy(l edl, "l edon.gif");
cgi _redirectto(state, REDI RECTTO);
return O;
}
int | ed2toggl e(HttpState* state)
{
if (strcnp(led2,"ledon.gif")==0)
strcpy(led2, "l edoff.gif");
el se
strcpy(l ed2, "l edon. gif");
cgi _redirectto(state, REDI RECTTO);
return O;
}
int |ed3toggle(HttpState* state)
{
if (strcnp(led3,"ledon.gif")==0)
strcpy(led3, "l edoff.gif");
el se
strcpy(l ed3, "l edon.gif");
cgi _redirectto(state, REDI RECTTO);
return O;
}
int | ed4toggl e(HttpState* state)
{
if (strcnp(led4,"ledon.gif")==0)
strcpy(l ed4, "l edoff.gif");
el se
strcpy(l ed4, "l edon. gif");
cgi _redirectto(state, REDI RECTTO);
return O;
}
142 TCP/IP User’s Manual

const HttpSpec http flashspec[] = {

{HTTPSPEC FILE, "/", index_htm, NULL, O, NULL, NULL},

{HTTPSPEC FI LE, "/index.shtm ", index_htm , NULL, O, NULL, NULL},
{HTTPSPEC FI LE, "/showsrc.shtm ", showsrc_shtm , NULL, O, NULL, NULL},
{HTTPSPEC FI LE,"/rabbitl1.gif", rabbitl gif, NULL, O, NULL, NULL},

{ HTTPSPEC_FI LE,
{HTTPSPEC_FI LE, "
{HTTPSPEC_FI LE, "

"/l edon.gif",ledon_gif, NULL, O, NULL, NULL},
[ledoff.gif",ledoff_gif, NULL, O, NULL, NULL},
[button.gif",button_gif, NULL, O, NULL, NULL},

{HTTPSPEC FI LE, "ssi.c", ssi_c, NULL, 0, NULL, NULL},
{HTTPSPEC VARI ABLE, "led1", O, | edl, PTR1S6, "os", NULL},
{HTTPSPEC VARI ABLE, "l ed2", 0, | ed2, PTR16, "os", NULL},
{HTTPSPEC VARI ABLE, "l ed3", 0, | ed3, PTR16, "os", NULL},
{HTTPSPEC VARI ABLE, "l ed4", 0, | ed4, PTR16, "os", NULL},
{HTTPSPEC FUNCTI ON, "/ledltog.cgi", 0, |edltoggle, O, NULL, NULL},
{HTTPSPEC _FUNCTI ON, "/led2tog.cgi", 0, |ed2toggle, O, NULL, NULL},
{HTTPSPEC _FUNCTI ON, "/led3tog.cgi", 0, |ed3toggle, O, NULL, NULL},
{HTTPSPEC FUNCTI ON, "/led4tog.cgi", 0, |ed4toggle, O, NULL, NULL},
L
mai n()
{
strcpy(l edl, "l edon.gif");
strcpy(l ed2, "l edon. gif");
strcpy(led3, "l edoff.gif");
strcpy(l ed4, "l edon. gif");
sock init();
http_ init();
tcp_reserveport (80);
while (1) {
htt p_handl er () ;
}
}

When you compileand run Ssi . ¢, you seethe LNK light on the board come on. Point your browser
at the controller (e.g., http://10.10.6.100/). The ACT light will flash a couple of times and your
browser will display the page.

This program displays pictures of LEDs. Their state istoggled by pressing the image of aBUTTON.
This program uses Server Side Includes (SSI) and the Common Gateway Interface (CGI).

Chapter 4: HTTP Server 143

4.3.2.1 SSI| Feature

SSI commands are an extension of the HTML comment command (<!--Thisis a comment -->). They
allow dynamic changesto HTML files and are resolved at the server side, so the client never sees
them. HTML files that need to be parsed because they contain SSI commands, are recognized by the
HTTP server by the file extension shtml.

The supported SSI commands are:

e #echo var
e #exec cnd
e #include file

They are used by inserting the command into an HTML file:

<I--#include file="anyfile” -->
The server replaces the command, #i ncl ude fi | e, withthe contentsof anyfi | e.
#exec cnd executesacommand and replaces the SSI command with the output.

Dynamically changing a variable on a web page

The Ssi . sht m file, located in the/ Sanpl es/ Tcpi p/ H t p/ Pages folder, gives an example of
dynamically changing a variable on aweb page using #echo var.

<img SRC="<!--#echo var="I|edl" -->">

In an shtml file, the “<! - - #echo var ="1ed1" -->"isreplaced by the value of the variable
| ed1 fromtheht t p_f | ashspec structure.

Htt pSpec http_fl ashspec[] =

{
...

{ HTTPSPEC VARI ABLE, "ledl1", 0, l|ledl, PTR16, "%", NULL}
/...

sht m _handl er looksup | ed1 and replacesit with the text output from:

printf("%", (char*)ledl);

Thel edl variableiseither | edon. gi f orl edof f. gi f. When the browser loads the page, it
replaces

<i g SRC="<!--#echo var="1edl"-->">
with

<i mg SRC="I| edon. gif">

144 TCP/IP User's Manual

or

This causes the browser to load the appropriate image file.

4.3.2.2 CGI Feature

Ssi . ¢ aso demonstrates the Common Gateway Interface. CGlI is astandard for interfacing external
applications with HTTP servers. Each time a client requests an URL corresponding to a CGl pro-
gram, the server will execute the CGI program in real-time.

Inthe Ssi . sht nl file, thisline creates the clickable button viewable from the browser.

<TD> <inmgy SRC="button.gif"> </ A> </ TD>

When the user clicks on the button, the browser will request the/ | ed1t 0g. cgi entity. This causes
the HTTP server to examine the contents of the ht t p_f | ashspec structure looking for
/1 ed1lt og. cgi . Itfindsit and noticesthat | ed1t oggl e() needsto becalled.

Thel ed1t oggl e function changes the value of thel ed1 variable, then redirects the browser back
to the original page. When the original page is reloaded by the browser, the LED image will have
changed states to reflect the user’s action.

4.3.3 Web Pages With HTML Forms

With aweb browser, HTML forms enable usersto input values. With a CGI program, those values
can be sent back to the server and processed. The FORM and INPUT tags are used to create formsin
HTML.

The FORM tag specifies which elements constitute a single form and what CGI program to call when
the form is submitted. The FORM tag has an option called ACTION. This option defines what CGlI
program is called when the form is submitted (when the “ Submit” button is pressed). The FORM tag
also has an option called METHOD that defines the method used to return the form information to the
web server. In Section 4.3.3.1, “Sample HTML Page,” on page 146, the POST method is used, which
will be described later. All of the HTML between the <FORM> and </FORM> tags define what is
contained within aform.

The INPUT tag defines a specific form element, the individual input fieldsin aform. For example, a
text box in which the user may type in avalue, or a pull-down menu from which the user may choose
anitem. The TY PE parameter defines what type of input field is being used. In following example, in
the first two cases, it isthe text input field, which is a single-line text entry box. The NAME parame-
ter defines what the name of that particular input variableis, so that when the information is returned
to the server, then the server can associate it with aparticular variable. The VALUE parameter defines
the current value of the parameter. The SIZE parameter defines how long the text entry box is (in
characters).

At the end of the HTML page in our example, the Submit and Reset buttons are defined with the
INPUT tag. These use the special types “submit” and “reset”, since these buttons have special pur-
poses. When the submit button is pressed, the form is submitted by calling the CGI program

“myf orni.

Chapter 4: HTTP Server 145

4.3.3.1 Sample HTML Page
AnHTML page that includes aform may look like the following:

<HTM_>
<HEAD><TI TLE>ACME Ther nostat Setti ngs</ Tl TLE></ HEAD>
<BODY>
<H1>ACME Thernostat Settings</Hl>
<FORM ACTI ON="nyform ht ml " METHOD=" POST" >
<TABLE BORDER>
<TR>
<TD>Nane</ TD>
<TD>Val ue</ TD>
<TD>Descri pti on</ TD>
</ TR>

<TR>
<TD>H gh Tenp</ TD>
<TD><I NPUT TYPE="text" NAME="tenphi" VALUE="80"
Sl ZE="5" ></ TD>
<TD>Maxi mum i n tenperature range (°F)</TD>
</ TR>

<TR>
<TD>Low Tenmp</ TD>
<TD><I| NPUT TYPE="text" NAME="tenpl 0" VALUE="65"
Sl ZE="5"></ TD>
<TD>M ni mumin tenperature range (°F)</TD>
</ TR>
</ TABLE>
<P>
<I NPUT TYPE="subnmit" VALUE="Submit">
<I NPUT TYPE="reset" Val ue="Reset">

</ FORM></ BODY>
</ HTM_>

146 TCP/IP User's Manual

The form might display asfollows:

2 ACME Thermostat Settings - Netscape

File Edit “iew Go Communicator Help
T Back Fomward FReload Home Search Metzcape Print Sm
b »«nt " Bookmarks A& Location: Ifile:.-".-".-"EI.-"m_l,lfu:urm.htmI j ﬁ' What's Related

ACME Thermostat Settings

|Name |"Jalue |Desu::ription
High Temp IBD Dlazarmum in ternperature range (°F)
Low Temp IES Il it ternperature range (°F)

Subimit | Fezet |

= (== \Document; Daone

When the form is displayed by a browser, the user can change values in the form. But how doesthis
changed data get back to the HTTP server? By using the HTTP POST command. When the user
presses the “ Submit” button, the browser connects to the HTTP server and makes the following
request:

POST nyform HTTP/ 1.0
(some header information)

Content-Length: 19
where “nyf or ni isthe CGI program that was specified in the ACTION attribute of the FORM tag
and POST isthe METHOD attribute of the FORM tag. “ Content-Length” defines how many bytes of
information are being sent to the server (not including the request line and the headers).

Then, the browser sends a blank line followed by the form information in the following manner:

t emphi =80&t enpl 0=65
That is, it sends back name and value pairs, separated by the ‘&’ character. (There can be some fur-
ther encoding done here to represent special characters, but we will ignore that in this explanation).
The server must read in the information, decode it, parseit, and then handle it in some fashion. It will

check the validity of the new values, and then assign them to the appropriate C variable if they are
valid.

Chapter 4: HTTP Server 147

4.3.3.2 POST-style form submission

If an HTML file specifies a POST-style form submission (i.e., METHOD=" POST"), the form will still
be waiting on the socket when the CGI handler is called. Therefore, it isthe job of the CGI handler to
read this data off the socket and parse it in a meaningful way. The samplefiles Post . ¢ and

Post 2. c inthe\ Sanpl es\ Tcpi p\ Ht t p folder show how to do this.

The HTTP POST command can put any kind of data onto the network. There are many known encod-
ing schemes currently used, but we will only look at URL-encoded data in this document. Other
encoding schemes can be handled in a similar manner.

4.3.3.3 URL-encoded Data

URL-encoded datais of the form "namel=valuel& name2=vaue2," and is similar to the CGI form
submission type passed in normal URLSs. This has to be parsed to nane=val ue pairs. The rest of
this section details an extensible way to do this.

Thisinitializes two possible HTML form entriesto be received, and a place to store the results.

#def i ne MAX_FORMSI ZE64
t ypedef struct {
char *nane;
char val ue[MAX_FORMSI ZE] ;
} FORMIype;
FORMIype FORMSpec] 2] ;

void init forms(void) {
FORMSpec[0] . nane
FORMSpec| 1] . nane

"user _nanme";
"user_email";

148 TCP/IP User's Manual

Reading & Storing URL-encoded Data

par se_post () reads URL-encoded data off the network. and callspar se_t oken() to store
the datain FORMBpec|] .

/1 Parse one token 'foo=bar', matching 'foo’ to the name field in
/'l the struct, and store 'bar' into the val ue

voi d parse_token(HttpState* state) {

int i, len;

for(i=0; i<HTTP_MAXBUFFER; i ++) {
i f(state->buffer[i] =="'=")
state->buffer[i] = '"\0";

}

state->p = state->buffer + strlen(state->buffer) + 1;
for(i=0; i<(sizeof(FORMBpec)/sizeof (FORMIype)); i++) {
i f(!strcnp(FORMBpec[i]. nane, state->buffer)) {
len = (strlen(state->p)>MAX FORVSI ZE) ? MAX FORMSI ZE - 1:
strlen(state->p);
strncpy(FORMBpec[i]. val ue, st ate->p, 1+l en) ;
FORMSpec[i].val ue[MAX FORMSI ZE - 1] = '\0';

/'l Read URL-encoded data and call parsing function to store data
int parse_post(HttpState* state) {
int ret;
while(1l) {
ret = sock _fastread((sock type *)&state->s, state->p, 1);
if(0 ==ret) {
*state->p = '\0';
parse_t oken(state);
return 1,

}
if((*state->p=="&) || (*state->p=="\r"') || (*state->p=="\n'))
{ /* found one token */
*state->p = '\0';
par se_t oken(state);
state->p = state->buffer;
} else {
st at e- >p++;
}
if((state->p - state->buffer) > HITP_MAXBUFFER) {
/* input too long */
return 1,
}
}
}

Chapter 4: HTTP Server 149

4.3.3.4 Sample of a CGI Handler
This next function isthe CGI handler. It is a state-machine-based handler that generates the page. It

calspar se_post () and referencesthe structure that is now filled with the parsed data we
wanted.

/*
* Sanpl e submt.cgi function
*/
int submt(HtpState* state) {

int i;
i f(state->length) {

[* buffer to wite out */

if(state->of fset < state->length) {
state->of fset += sock fastwite((sock type *)&state->s,
state->buffer + (int)state->offset, (int)state->|ength-
(int)state->offset);

}
el se
{
st at e->of f set = O;
state->l ength = 0;
}

150 TCP/IP User's Manual

/*
* Sanmpl e submit.cgi function continued
*/
} else {
swi tch(state->substate) {

case 0:
strcpy(state->buffer, "HTTP/1.0 200 OK\r\n");
br eak;

case 1:
[* init the FORMSpec data */
FORMSpec[0] . val ue[0] = "\0";
FORMSpec[1] . val ue[0] = "\0';
state->p = state->buffer;
parse_post (state);
st at e- >subst at e++;
return O;

case 2:
htt p_set cooki e(st at e->buffer, FORMSpec[O0]. val ue);
br eak;

case 3:
strcpy(state->buffer, "\r\n\r\n<htm ><head>

<title>Results</title></head><body>\r\n");

br eak;

case 4:
sprintf(state->buffer, "<p>Usernane:
%s<p>\r\ n<p>Enmi | :

%s<p>\r\n",

FORMSpec[0] . val ue, FORMSpec[1]. val ue);
br eak;

case 5:
strcpy(state->buffer, "<p>Go honme
</ body></htm >\r\n");
br eak;

def aul t:
stat e->substate = O0;
return 1,

}

state->l ength = strlen(state->buffer);

stat e->of fset = 0;

st at e- >subst at e++;

}

return O;

Chapter 4: HTTP Server 151

4.3.4 HTML Forms Using Zserver.lib

In this section, we will step through a complete example program that usesHTML forms. Through
this step-by-step explanation, the method of using the functionsin ZSERVER. LI B will become
clearer.

These lines are part of the standard TCP/IP configuration. You must change them to whatever your
local 1P address and netmask are. Contact your network administrator for these numbers.

#define My_| P_ADDRESS "10.10.6.112"
#defi ne MY_NETMASK "255. 255. 255. 0"

Defining FORM_ERROR_BUF isrequired in order to use the HTML form functionality in
Zserver. | i b. Thevalue represents the number of bytes that will be reserved in root memory for
the buffer which will be used for form processing. This buffer must be large enough to hold the name
and value for each variable, plus four bytesfor each variable. Since we are building a small form, 256
bytes is sufficient.

#def i ne FORM ERROR BUF 256

Sincewewill not beusingtheht t p_f | ashspec array, then we can define the following macro,
which removes some code for handling this array from the web server.

#def i ne HTTP_NO_FLASHSPEC

These lines are part of the standard TCP/IP configuration.

#mrenmap xmem
#use "dcrtcp.lib"
#use "http.lib"

const HttpType http types[] =
{

H

{ ".htm", "text/htm ", NULL}

These are the declarations of the variables that will be included in the form.

i nt tenphi;

i nt tenpnow;
int tenpl o;
float hum dity;
char fail[21];

152 TCP/IP User's Manual

voi d mai n(voi d)

{

An array of type For miar must be declared to hold information about the form variables. Be sureto
allocate enough entriesin the array to hold al of the variables that will go in the form. If more forms
are needed, then more of these arrays can be allocated.

For nvar nyforni5];

These variables will hold the indices in the TCP/IP servers’ object list for the form and the form vari-
ables.

int var;
int form

This array holds the possible values for the fail variable. The fail variable will be used to make a pull-
down menu in the HTML form.

const char* const fail _options[] = {
"Emai | "
" Page",
"Emai | and page",
" Not hi ng"
I

These lines initialize the form variables.

tenphi = 80;
t enpnow = 72
tenpl o = 65

humdity =
strcpy(fail

0. 3;
"Page") ;

The next line adds aform to the TCP/IP servers object list. The first parameter gives the name of the
form. Hence, when a browser requests the page “nyf or m ht m ”, the HTML form is generated and
presented to the browser. The second parameter gives the developer-declared array in which form
information will be saved. The third parameter gives the number of entriesin the myf or marray (this
number should match the one given in the myf or mdeclaration above). The fourth parameter indi-
cates that this form should only be accessible to the HTTP server, and not the FTP server.
SERVER_HTTP should always be given for HTML forms. The return valueisthe index of the newly
created form in the TCP/IP servers' object list.

Chapter 4: HTTP Server 153

form = sspec_addforn("nyformhtm ", myform 5, SERVER HITP);

Thisline setsthe title of the form. The first parameter is the form index (the return value of
sspec_addf or n()), and the second parameter isthe form title. Thistitle will be displayed as the
title of the HTML page and as alarge heading in the HTML page.

sspec_setforntitle(form "ACVE Thernostat Settings");

The following line adds a variable to the TCP/IP servers' abject list. It must be added to the TCP/IP
servers' object list before being added to the form. The first parameter is the name to be given to the
variable, the second is the address of the variable, the third is the type of variable (thiscan be | NT8,
I NT16, 1 NT32, FLOAT32, or PTR16), the fourth is a printf-style format specifier that indicates
how the variable should be printed, and the fifth isthe server for which thisvariableisaccessible. The
return valueisthe index of the variable in the TCP/IP servers' object list.

var = sspec_addvariabl e("tenphi ", &tenphi, |INT16, "%l", SERVER HTTP);

The following line adds a variable to aform. The first parameter is the index of the form to add the
variableto (thereturn value of sspec_addf or m()), and the second parameter is the index of the
variable (the return value of sspec_addvari abl e()). Thereturn valueis the index of the variable
within the developer-declared For nVar array, myf or m

var = sspec_addfv(form var);

This function sets the name of aform variable that will be displayed in the first column of the form
table. If thisnameis not set, it defaults to the name for the variable in the TCP/IP servers’ object list
(“temphi”, in this case). Thefirst parameter is the form in which the variable is located, the second
parameter is the variable index within the form, and the third parameter is the name for the form vari-
able.

sspec_setfvnane(form var, "H gh Tenp");

This function sets the description of the form variable, which is displayed in the third column of the
form table.

sspec_setfvdesc(form var, "Maxinumin tenperature range
(60 - 90 ° F)");

154 TCP/IP User's Manual

This function sets the length of the string representation of the form variable. In this case, the text box
for the form variable in the HTML form will be 5 characters long. If the user enters a value longer
than 5 characters, the extra characters will be ignored.

sspec_setfvlen(form var, 5);

This function sets the range of values for the given form variable. The variable must be within the
range of 60 to 90, inclusive, or an error will be generated when the form is submitted.

sspec_setfvrange(form var, 60, 90);

This concludes setting up the first variable. The next five lines set up the second variable, which rep-
resents the current temperature.

var = sspec_addvari abl e("tenpnow', &t enpnow, |NT16, "% ", SERVER HITP);
var = sspec_addfv(form var);

sspec_setfvnanme(form var, "Current Tenp");

sspec_setfvdesc(form var, "Current tenperature in ° F");
sspec_setfvlen(form var, 5);

Since the value of the second variable should not be modifiable viathe HTML form (by default vari-
ables are modifiable,) the following line is necessary and makes the given form variable read-only
when the third parameter is 1. The variable will be displayed in the form table, but can not be modi-
fied within the form.

sspec_setfvreadonly(form var, 1);

These lines set up the low temperature variable. It is set up in much the same way as the high temper-
ature variable.

var sspec_addvari abl e("tenpl 0", & enplo, INT16, "%l", SERVER HITP);
var sspec_addfv(form var);
sspec_setfvnane(form var, "Low Tenp");
sspec_setfvdesc(form var, "Mninumin tenperature range
(50 - 80 ° F)");
sspec_setfvlen(form var, 5);
sspec_setfvrange(form var, 50, 80);

Chapter 4: HTTP Server 155

This code begins setting up the string variable that specifies what to do in case of air conditioning
failure. Note that the variable is of type PTR16, and that the address of the variableis not given to
sspec_addvari abl e(), sincethevariablef ai | aready represents an address.

Thisline associates an option list with aform variable. The third parameter gives the devel oper-
defined option array, and the fourth parameter gives the length of the array. The form variable can
now only take on values listed in the option list.

This function sets the type of form element that is used to represent the variable. The default is
HTM__FORM_TEXT, whichis a standard text entry box. This line sets the type to
HTM._FORM_PULLDOWN, which is a pull-down menu.

Finaly, this code sets up the last variable. Note that it isafloat, so FLOAT32 isgivenin the
sspec_addvari abl e() call. Thelast function call issspec_set f vfl oat range()
instead of sspec_set f vrange() , sincethisisafloating point variable.

These calls create aliases in the TCP/IP servers’ object list for

156 TCP/IP User's Manual

These lines complete the sample program. They initialize the TCP/IP stack and web server, and run
the web server.

sock_init();
http_init();
while (1) {

htt p_handl er () ;
}

}

Thisisthe form that is generated:

2 ACME Thermostat Settings - Metzcape

File Edit “iew Go Communicator Help

Back Forward Aeload Haome Search Metzcape Fririt Security Shop & tupﬂ

Jannkmarks v,/ Gu:utu:u:l ; ﬁv'w’hat's Related
ACME Thermostat Settings

|Name |Turalue |Desu:ﬁption

High Temp IEID— Tlasitmum in temperature range (60 - 90 F)
|Current Temp |T"2 |Cu:rrent temperature i °F

Low Temp IES— Llinirmom in tetnperature range (20 - B0 °F)
Fallure Action IF"age j Lction to take i case of air-condiioning falure
Hurridity 0.30 Target humidity (between 0.0 and 1.07

Subrmit | Heszet |

= == | |Dacument; Done

Chapter 4: HTTP Server 157

4.4 Functions

cgi _redirectto

void cgi _redirectto(H tpState* state, char* url);

DESCRIPTION

This utility function may be called in aCGl function to redirect the user to another page.
It sendsauser tothe URL storedinur | . Youshouldimmediately issuea“r et urn 0; ”
after calling thisfunction. The CGl is considered finished when you call this, and will be
in an undefined state.

PARAMETERS
state Current server struct, as received by the CGI function.
url Fully qualified URL to redirect to.

RETURN VALUE
None - setsthe state, so the CGl must immediately return with avalue of 0.

LIBRARY
HTTP. LI B

SEE ALSO
cgi _sendstring

158 TCP/IP User's Manual

cgi _sendstring

voi d cgi _sendstring(H tpState* state, char* str);

DESCRIPTION

Sends a string to the user. You should immediately issuea“r et urn 0; " after calling

thisfunction. The CGl is considered finished when you call this, and will be in an unde-
fined state. This function greatly simplifiesa CGIl handler becauseit allows you to gen-

erate your page in abuffer, and then let the library handle writing it to the network.

PARAMETERS
state Current server struct, as received by the CGI function.
str String to send.

RETURN VALUE
None - sets the state, so the CGl must immediately return with avalue of O.

LIBRARY
HTTP. LI B

SEE ALSO
cgi _redirectto

http_addfil e

int http_addfile(char* nane, long | ocation);

DESCRIPTION
Adds afileto the TCP/IP serverslist.

PARAMETERS
name Name of thefile (e.g.,"/ i ndex. ht m).

| ocation Address of thefile data. (from #xi nport)

RETURN VALUE
0: Success;
1: Failure.
LIBRARY
HTTP. LI B
SEE ALSO
http_delfile

Chapter 4: HTTP Server

159

htt p_cont ent encode

char *http_contentencode(char *dest, const char *src, int len);

DESCRIPTION

Convertsastringtoinclude HTTPtransfer-coding ““tokens" (such as & #64; (decimal) for
at-sign) where appropriate. Source string is NULL byte terminated. Destination buffer is
bounded by a max string length. Thisfunction is reentrant.

PARAMETERS
dest Buffer where encoded string is stored.
src Buffer holding original string (not changed)
I en Size of destination buffer.

RETURN VALUE

dest : Therewasroom for al conversions.
NULL: Not enough room.

LIBRARY
HTTP. LI B

SEE ALSO
http_url decode

160 TCP/IP User's Manual

http_delfile

int http_delfile(char* nane);
DESCRIPTION
Deletesafile from TCP/IP servers object list.

PARAMETERS

name Name of thefile, aspassedtoht t p_addfi | e.

RETURN VALUE

0: Success;
1: Failure (not found).

LIBRARY
HTTP. LI B

SEE ALSO
http_addfile

htt p_fi nderr buf

char* http_finderrbuf(char* nane);

DESCRIPTION
Finds the occurrence of the given variableinthe HTML form error buffer, and returnsits
location.

PARAMETERS
name Name of the variable.

RETURN VALUE

NULL: Falure
I NULL: Success, location of the variablein the error buffer.

LIBRARY
HTTP. LI B

Chapter 4: HTTP Server 161

http_nextfverr

void http_nextfverr(char* start, char** nane, char** val ue,
int* error, char** next);

DESCRIPTION

Getsthe information for the next variablein the HTML form error buffer. If any of the
last four parametersin the function call are NULL, then those parameters will not have a
value returned. Thisisuseful if you are only interested in certain variable information.

PARAMETERS
start Pointer to the variable in the buffer for which we want to get infor-
mation.
name Return location for the name of the variable.
val ue Return location for the value of the variable.
error Return location for whether or not the variableisin error (O if it is
not, 1if itis).
next Return location for a pointer to the variable after this one.
LIBRARY
HTTP. LI B

htt p_handl er

void http_handl er();

DESCRIPTION

Thisisthe basic control function for the HTTP server, atick functionto runthe HTTP
daemon. It must be called periodically for the daemon to work. It parsesthe requests and
passes control to the other handlers, either ht Ml _handl er,sht M _handl er,orto
the devel oper-defined CGI handler based on the request’s extension.

LIBRARY
HTTP. LI B

SEE ALSO
http_init

162 TCP/IP User's Manual

http_init

int http_init(void);

DESCRIPTION
Initializesthe HT TP daemon.

RETURN VALUE
0: Success.

LIBRARY
HTTP. LI B

SEE ALSO
htt p_handl er

htt p_parseform

int http_parseform(int form HttpState* state);

DESCRIPTION

Parsesthereturned form information. It expectsaPOST submission. Thisfunctionisuse-
ful for adevel oper who only wantsthe parsing functionality and wishesto generateforms
hersdlf. Note that the developer must till build the array of For mVar sand use the
server _spec table Thisfunction will not, however, automatically display the form
when used by itsdf. If all variables satisfy al integrity checks, then the variables’ values
are updated. If any variablesfail, then none of the values are updated, and error informa-
tioniswrittenintothe error buffer If thisfunctionisused directly, the developer must pro-

Cess errors.
PARAMETERS
form server _spec index of theform (i.e., locationin TCP/IP servers
object list)
state The HTTP server with which to parse the POSTed data

RETURN VALUE

0 if thereis more processing to do;
1 form processing has been completed.

LIBRARY
HTTP. LI B

Chapter 4: HTTP Server

163

htt p_set cooki e

voi d http_setcooki e(char* buf, char* value);

DESCRIPTION

This utility generatesacookie on theclient. Thiswill storethetextinval ue into acook-
ie-generation header that will bewritten to buf . Thiswill not be written out to the client,
and it isstill the responsibility of the client to write out. Also, this utility will generate an
HTTP header line that must be written along with any other headers that are written be-

foretheHTML fileitsalf iswritten out. When a page isrequested from the client, and the
cookieisaready set, thetext of the cookiewill bestoredinst at e- >cooki e[] . This
isachar*,and st at e->cooki e[0] will equa ' \ 0" if no cookie was available.

PARAMETERS
buf Buffer to store cookie-generation header.
val ue Text to store in cookie-generation header.
LIBRARY
HTTP. LI B

164 TCP/IP User's Manual

http_url decode

char *http_url decode(char *dest, const char *src, int |en);

DESCRIPTION

Convertsastring with HTTP transfer-coding *“tokens" (such as %20 (hex) for space) into
actual values. Changes"+" into a space. String can be NULL terminated; it is a so bound-
ed by a specified string length. This function is reentrant.

PARAMETERS
dest Buffer where decoded string is stored.
src Buffer holding original string (not changed).
I en Maximum size of string (NULL terminated strings can be shorter).

RETURN VALUE

dest: If al conversion was good.
NULL: If some conversion had troubles.

LIBRARY
HTTP. LI B

SEE ALSO
http_cont ent encode

Chapter 4: HTTP Server

165

shtm _addf uncti on

int shtm _addfunction(char* name, void (*fptr()));

DESCRIPTION
AddsaCGlI/SSI-exec function for making dynamic web pagesto the TCP/IP servers’ ob-
ject list.
PARAMETERS
name Name of thefunction (e.g., "/ f 00. cgi ").
fptr Function pointer to the handler, that must take Ht t pSt at e* asan

argument. This function should return ani nt (0 while still pend-
ing, 1 when finished).

RETURN VALUE
0: Success;
1: Failure (no room).

LIBRARY
HTTP. LI B

SEE ALSO
sht ml _del function

166 TCP/IP User's Manual

sht M _addvari abl e

int shtm _addvari abl e(char* name, void* variable, word type,
char* format);

DESCRIPTION
This function adds a variable so it can be recognized by thesht ml _handl er.

PARAMETERS
name Name of the variable.
vari abl e Pointer to the variable.
type Type of variable. The following types are supported: | NT8,
I NT16, | NT32, PTR16, FLOAT32
f or mat Standard printf format string. (e.g., "%d")

RETURN VALUE
0: Success;
1: Failure (no room).

LIBRARY
HTTP. LI B

SEE ALSO
sht ml _del vari abl e

Chapter 4: HTTP Server 167

shtm _del function

int shtm _del function(char* name);
DESCRIPTION
Deletes afunction from the TCP/IP servers' object list.
PARAMETERS
name Name of the function asgivento sht m _addf uncti on.

RETURN VALUE

0: Success;
1: Failure (not found).

LIBRARY
HTTP. LI B

SEE ALSO
sht ml _addf unction

sht ml _del vari abl e

int shtm _del variabl e(char* nane);

DESCRIPTION
Deletes avariable from the TCP/IP servers' object list.

PARAMETERS

name Name of thevariable, asgiventosht i _addvari abl e.

RETURN VALUE

0: Success;
1: Failure (not found).

LIBRARY
HTTP. LI B

SEE ALSO
sht ml _addvari abl e

168 TCP/IP User's Manual

FTP CLIENT 5

Thelibrary FTP_CLI ENT. LI Bimplementsthe File Transfer Protocol (FTP) for the client side of
the connection.

5.1 Configuration Macros

DTP_PORT

The port to listen on for data connections. The low byte of the port number must be 0, aswe use
the next 256 ports above the one supplied. The default is OxA0O.

FTP_MODE_DOWNLOAD
Specifies downloading afile.

FTP_MODE_UPLOAD
Specifies uploading afile.

MAX_NAMEL EN

Maximum length for all usernames, passwords, and filenames. The default is 64. Note that this
must contain the NULL byte, so if it is set to 64, the maximum filename length is 63 characters.

Chapter 5: FTP CLIENT 169

5.2 Functions

ftp_client_setup

int ftp_client_setup(| ong host, int port, char *usernanme, char
*password, int node, char *filename, char *dir, char
*puffer, int length);

DESCRIPTION

Setsup aFTPtransfer. Itiscalled first, thenft p_cl i ent _ti ck() iscaled until it
returns non-zero.

PARAMETERS
host Host I P address of FTP server.
port Port of FTP server, O for default.
user name Username of account on FTP server.
passwor d Password of account on FTP server.
node Mode of transfer (FTP_MODE_UPLOAD or
FTP_MODE_DOWNL QAD).
fil ename Filename to get/pui.
dir Directory fileisin, NULL for default directory.
buf f er Buffer to get/put the file from/to.
I ength On upload, length of file; on download size of buffer.

RETURN VALUE

0: Success;
1: Failure.

LIBRARY
FTP_CLI ENT. LI B

170 TCP/IP User's Manual

ftp_client tick
int ftp_client_tick(void);

DESCRIPTION
Tick function to run the FTP daemon. Must be called periodically.

RETURN VALUE

0: Still pending, call again;

1: Success (file transfer complete);

2: Failure (generad);

3: Failure (Couldn't connect to remote host);
4: Failure (File not found).

LIBRARY
FTP_CLI ENT. LI B

ftp_client _filesize
int ftp_client _filesize(void);

DESCRIPTION

If afile was downloaded (mode == FTP_MODE_DOWAL QAD), when
ftp_client_tick() returnsl, thisfunction will return the size of the fetched file.
Thisnumber will beclobberedif ft p_cl i ent _set up() iscaled again, soit should
be copied out and stored quickly!

RETURN VALUE
Size, in bytes.

LIBRARY
FTP_CLI ENT. LI B

Chapter 5: FTP CLIENT 171

5.3 Sample FTP Transfer

#define My_| P_ADDRESS "10. 10. 6. 105"
#define MY_NETMASK " 255. 255. 255. 0"

#menmap xnmem
#use "dcrtcp.lib"
#use "ftp_client.lib"

#defi ne REMOTE_HOST "10. 10. 6. 19"
#defi ne REMOTE_PORT O

mai n() {
char buf[2048];
int ret, i, j;

printf("Calling sock init()...\n");
sock init();
/* Set up the ftp transfer. This is to the host defined above,

with a normal anonynous/e-mail password | ogin info. A downl oad
of the file "bar" is selected to be stored in 'buf."'*/

printf("Calling ftp_client_setup()...\n");
if(ftp_client_setup(resol ve(REMOTE HOST) , REMOTE PORT,
anonynous", "anon@non. conl', FTP_MODE DOWLOAD, " bar ",
NULL, buf, si zeof (buf))) {
printf("FTP setup failed.\n");
exit(0);
}
printf("Looping on ftp client _tick()...\n");
while(0 == (ret = ftp_client_tick()))
conti nue;

if(1 ==ret) {
printf("FTP conpl eted successfully.\n");

[* ftp_client filesize() returns the size of the transfer,
senses we requested a downl oad. */

buf[ftp client filesize()] = "'\0";
printf("Data => '%'\n", buf);

} else {
printf("FTP failed: status == %\n",ret);

}

172 TCP/IP User's Manual

FTP Server 6

Thelibrary FTP_SERVER. LI B implementsthe File Transfer Protocol for the server side of the
connection. FTP uses two TCP connections to transfer afile. The FTP server does a passive open
on well-known port 21 and then listens for a client. Anonymous login is supported.

6.1 Configuration Constants
FTP_MAXSERVERS

Thisisthe number of simultaneous connections the FTP server can support. It isrecommended
that this be set to one (the default), as each subsequent server requires a significant amount of
RAM (2500 bytes by default; this can change through SOCK_BUF_SI ZEort cp_MaxBuf Si ze
(deprecated)).

FTP_MAXNANE

The maximum length of filenames, usernames, and passwords. (It must include a null character so,
with it's default value of 20, filenames can be 19 characterslong.)

FTP_MAXLI NE

The size of the working buffer in each server. Also, thisis the maximum size of each network
read/write. It needs to be a minimum of about 256 bytes for the server to function properly. You
probably don't need to change its default of 1024 bytes.

FTP_TI MEQUT

The length of time to wait for data from the remote host, before terminating the connection. If you
have a high-latency network condition, this might need to be increased from its default of 16 sec-
onds to avoid premature closures.

6.1.1 File Options

#define O _UNUSED 0
#define O RDONLY 1
#define O WRONLY 2
#define O RDWR 3

Chapter 6: FTP Server 173

6.2 File Handlers

The datastructure FTPhandl er s canbepassedtof t p_i ni t to redefine how filesare read and
written to. It contains function pointersto al of theindividua functions. The default functions are
listed below.

typedef struct {

int (*open)();

int (*read)();

int (*wite)();

int (*close)();

int (*getfilesize)();
} FTPhandl ers;

open

i nt open(char *nane, int options, int uid);

DESCRIPTION
Opensafile.
HeRAMETERS
nane Thefileto open,
opti ons For aread-only filethevadueisO_RDONLY; for awrite-only file, the
valueisO WRONLY
uid The userid of the currently logged in user.

RETURN VALUE
A file descriptor should be returned, or - 1 on error.

174 TCP/IP User’'s Manual

getfilesize
int getfilesize(int fd);

DESCRIPTION

If afile was opened for reading (O_RDONLY), this should return the size of thefile.

PARAMETERS

fd Thefile descriptor that was returned when the file was opened.

RETURN VALUE
Thesize of thefilein bytes.

read
int read(int fd, char *buf, int |en);

DESCRIPTION
Reads a buffer of length| en fromf d into buf .

PARAMETERS
fd Thefile descriptor returned from open() .
buf Thelocation to read the fileinto.
l en The number of bytesto read.

RETURN VALUE
The number of bytes read.

Chapter 6: FTP Server

175

wite
int wite(int fd, char *buf, int len);

DESCRIPTION
Writes abuffer of length | en from buf tof d. Thisisnot currently supported.

PARAMETERS
fd Thefile descriptor returned from open() . Thisis destination the
datawill be written to
buf The source location of the data to be written
I en The number of bytesto write.

RETURN VALUE
Number of byteswritten.

cl ose
int close(int fd);

DESCRIPTION
Closesthefile, and invalidates the file descriptor.
PARAMETERS
fd Thefile descriptor (returned from open()) of thefileto close.
RETURN VALUE
0

Please note that if you redefine any of these file handler functions, all must be
replaced.

176 TCP/IP User’'s Manual

6.3 Functions

ftp_init
void ftp_init(FTPhandl ers *handl ers);
DESCRIPTION
Initializes the FTP daemon.

PARAMETERS

handl er s NULL means use default internal file handlers;
I'NULL meansto supply astruct of pointersto the various custom
file handlers (open, read, write, close, getfilesize).

RETURN VALUE
None.

LIBRARY

FTP_SERVER. LI B

ftp_tick
void ftp_tick(void);

DESCRIPTION

Onceftp_init hasbeencalled, ftp_ti ck mustbecaled periodicaly to run the
daemon. Thisfunction is non-blocking.

LIBRARY
FTP_SERVER. LI B

Chapter 6: FTP Server 177

6.4 Sample FTP Server
This code demonstrates a simple FTP server. The user "anonymous' may download the file "rab-

bitA.gif", but not "rabbitF.gif". The user "foo" (with password "bar") may download "rabbitF.gif",
but not "rabbitA.gif".

[* ftp_server.c */

#defi ne My_| P_ADDRESS "10. 10. 6. 105"
#defi ne MY_NETMASK "255. 255. 255. 0"
#defi ne MY_GATEWAY "10. 10. 6. 19"

#mrenmap xmem
#use "dcrtcp.lib"
#use "ftp_server.lib"

#xi nport "sanpl es/tcpi p/ http/ pages/rabbitl.gif" rabbit
mai n() {

int file;

i nt user;

[l Set up the first file and user

file = sspec_addxmenfile("rabbitA gif", rabbitl gif
user = saut h_adduser ("anonynmous", "", SERVER FTP)
sspec_setuser(file, user);

/1 Set up the second file and user

file = sspec_addxmenfile("rabbitF.gif", rabbitl gif
user = saut h_adduser("foo", "bar", SERVER FTP)
sspec_setuser(file, user);

sock_init();
ftp_init(NULL); /* use default handlers */
tcp_reserveport (21);
while(1) {
ftp_tick();
}

1 qgif

, SERVER_FTP)

, SERVER_FTP)

The program SSTATI C2. Cin SAMPLES\ TCPI P\ HTM. provides a more advanced example
than the one shown here.

178

TCP/IP User’'s Manual

TFTP Client 7

TFTP. LI Bimplementsthe Trivial File Transfer Protocol (TFTP). This standard protocol (inter-
net RFC783) is alightweight protocol typically used

Chapter 7: TFTP Client 179

7.0.2 Data Structure for TFTP

Thisdata structureis used to send and receive. Thet f t p_st at e structure, whichisrequired for
many of the API functionsin TFTP. LI B, may be alocated either in root data memory or in
extended memory. This structure is approximately 155 bytes long.

typedef struct tftp state {
byte state; /1 Current state. LSB indicates read(0)
[l or wite(l). Other bits determ ne
[/l state within this (see bel ow).

| ong buf _addr; /1 Physical address of buffer

word buf | en; /1 Length of buffer

wor d buf _used; /1 Anpunt Tx or Rx fromto buffer

wor d next bl k; /1 Next expected block #, or next to Tx
word ny_tid; /1 UDP port nunber used by this host
udp_Socket * sock; /1l UDP socket to use

| ongword rem.ip; /1 1P address of renote host

| ongword ti meout; /1 ms tinmer val ue for next tinmeout

char retry; [l retransmt retry counter

char fl ags; /1 msc flags (see bel ow).

/1 Followi ng fields not used after initial request has been
/1 acknow edged.

char node; /1 Translation node (see bel ow).

char file[129]; /1l File name on rempte host (TFTP
/1l server)- NULL term nated. This
/1l field will be overwitten with a

/1 NULL-term error nessage fromthe
/'l server if an error occurs.

}s

Macrosfor tftp_state- >nnde

#define TFTP_MODE_NETASCII O // ASC | text

#defi ne TFTP_MODE_OCTET 1 /1 8-bit binary

#define TFTP_MODE_MAIL 2 /1 Mail (remote file nanme is
/1l email address e.g.
/'l user @ost. bl ob. org)

7.0.3 Function Reference

Any of the following functions will require approximately 600-800 bytes of free stack. The data
buffer for the file to put or to get is always allocated in xmem (seexal | oc()).

7.0.3.1 TFTP Session
A session can be either a single download (get) or upload (put). The functions ending with 'x' are
versions that use a data structure allocated in extended memory, for applications that are con-
strained in their use of root data memory.

180 TCP/IP User's Manual

tftp_init
int tftp_init(struct tftp_state * ts);

DESCRIPTION

This function preparesfor a TFTP session and is called to complete initialization of the
TFTP date structure. Before calling this function, some fieldsin the structure
tftp_state mustbese upasfollows:

ts->state = <0 for read, 1 for wite>

ts->buf _addr = <physical address of xmem buffer>

ts->buf _len = <length of physical buffer, 0-65535>

ts->ny_tid = <UDP port nunber. Set 0 for default>

ts->sock = <address of UDP socket (udp_Socket *),or NULL to use
DHCP/ BOOTP socket >

ts->remip = <IP address of TFTP server host, or zero to use
default BOOTP host >

ts->npde = <one of the follow ng constants:

TFTP_MODE_NETASCI | ASCI | text
TFTP_MODE_COCTET 8-bit binary
TFTP_MODE_MAI L Mai | >

strcpy(ts->file, <renote filenane or mail address>)

Notethat mail mode can only be used to write mail to the TFTP server, and the file name
isthe e-mail address of the recipient. The e-mail message must be ASClI-encoded and
formatted with RFC822 headers. Sending e-mail via TFTP is deprecated. Use SMTP in-
stead since TFTP servers may not implement mail.

PARAMETERS
ts Pointertot ft p_st at e.
RETURN VALUE

0: OK
- 4: Error, default socket in use.

LIBRARY
TFTP. LI B

Chapter 7: TFTP Client 181

http://www.faqs.org/rfcs/rfc822.html

tftp_initx
int tftp_initx(long ts_addr);

DESCRIPTION

Thisfunction is called to complete initidization of the TFTP state structure, where the
structureispossibly stored somewhere other thanin theroot dataspace. Thisisawrapper
functionfort ft p_i ni t () . Seethat function description for details.

PARAMETERS
ts_addr Physical addressof TFTP state (structt f t p_st at e)
RETURN VALUE

0: OK
- 1: Error, default socket in use.

LIBRARY
TFTP. LI B

182 TCP/IP User's Manual

tftp_tick
int tftp_ tick(struct tftp_state * ts);

DESCRIPTION

Thisfunctioniscalled periodically in order to take the next step in aTFTP process. Ap-
propriate use of thisfunction allows single or multiple transfersto occur without bl ock-
ing. For multiple concurrent transfers, theremust beauniquet f t p_st at e structure,
and a unique UDP socket, for each transfer in progress. This function calls

sock _tick().

PARAMETERS

ts Pointer to TFTP state. This must have been set up using
tftp_init(),andmust bepassedto each cal of
tftp_tick() without ateration.

RETURN VALUE

1: OK, transfer not yet complete.
0: OK, transfer complete
- 1: Error from remote side, transfer terminated. In this case, thets_addr->file field will
be overwritten with a NUL L-terminated error message from the server.
- 2: Error, could not contact remote host or lost contact.
- 3: Timed out, transfer terminated.
- 4: (not used)
- 5: Transfer complete, but truncated -- buffer too small to receive the completefile.

LIBRARY
TFTP. LI B

Chapter 7: TFTP Client

183

int tftp_tickx(long ts_addr);

DESCRIPTION
Thisfunctionisa

184 TCP/IP User's Manual

tftp_exec

int tftp_exec(char put, |ong buf_addr, word * |en, int node,
char * host, char * hostfile, udp_Socket * sock);

DESCRIPTION

Prepare and execute a complete TFTP session, blocking until complete. This function is a wrapper
fortftp_init() andtftp_tick().Itdoesnotreturnuntil thecompletefileistransferred or
an error occurs. Note that approximately 750 bytes of free stack will be required by this function.

PARAMETERS

put 0: get file from remote host; 1: put file to host.

buf _addr Physical address of data buffer.

I en Length of data buffer. Thisis both an input and areturn parameter.
It should beinitialized to the buffer length. On return, it will be set
to the actual length received (for a get), or unchanged (for a put).

node Data representation: 0=NETASCII, 1=OCTET (binary), 2=MAIL.

host Remote host name, or NULL to use default BOOTP host.

hostfile Name of file on remote host, or e-mail address for mail.

sock UDP socket to use, or NULL to re-use BOOTP socket if available.

RETURN VALUE

0: OK, transfer complete.
- 1: Error from remote side, transfer terminated. Inthiscase, t s_addr->fil e
will be overwritten with a NUL L -terminated error message from the server.
- 2: Error, could not contact remote host or lost contact.
- 3: Timed out, transfer terminated
- 4: sock parameter was NULL, but BOOTP socket was unavailable.

LIBRARY
TFTP. LI B

Chapter 7: TFTP Client 185

186 TCP/IP User's Manual

SMTP Mail Client 8

SMTP (Simple Mail Transfer Protocol) is one of the most common ways of sending e-mail. SMTP
isasimple text conversation across a TCP/IP connection. The SMTP server usually resides on
TCP port 25 waiting for clients to connect.

Sending mail with the SMIP. LI B client library is afour-step process. First, build your e-mail
message, then call st p_sendmai | () . Next, repetitively cal st p_mai | ti ck() whileitis
returning SMITP_PENDI NG Finally, call snt p_st at us() to determineif the mail was sent suc-
cessfully. Thereis asample program in Section 8.4 that outlines how to send a simple mail mes-

sage.

8.1 Sample Conversation

The following isatypical listing of mail from the controller (me@somewhere.com) to some-
one@somewhereelse.com. The mail server that the controller is talking to is mail.somehost.com.
The lines that begin with a numeric value are coming from the mail server. The other lines were
sent by the controller. More information on the exact specification of SMTP and the meanings of
the commands and responses can be found in RFC821 at http://www.ietf.org.

220 mai |l . sonmehost.com ESMIP Service (WorldMail 1.3.122) ready
HELO 10. 10. 6. 100

250 nmmi | . sonmewher e. com

MAI L FROM <nme@onewhere. conp

250 MAI L FROM <ne@onewher e. con> OK

RCPT TO <soneone@onewher eel se. conp

250 RCPT TO <soneone@onewher eel se. con> OK
DATA

354 Start mail input; end with <CRLF>. <CRLF>
From <nme@onmewhere.conr

To: <soneone@onewher eel se. conp

Subj ect: test mail

test mail

250 Mail accepted
QT

221 mail . sonehost.com QUI T

You can see alisting of the conversation between your controller and the mail server by defining
the SMI'P_DEBUG macro at the top of your program.

Note that there must be a blank line after the line “ Subject: test mail”.

Chapter 8: SMTP Mail Client 187

http://www.ietf.org

8.2 Configuration
The SMTP client is configured by using compiler macros.

SMIP_DEBUG

Thismacro tellsthe SMTP code to log eventsto the STDIO window in Dynamic C. This provides
a convenient way of troubleshooting an e-mail problem.

SMIP_DOVAI N

This macro defines the text to be sent with the HEL O client command. Many mail serversignore
the information supplied with the HEL O, but some e-mail servers require the fully qualified name
in thisfield (i.e., somemachine.somedomain.com). If you have problems with e-mail being
rejected by the server, turn on SMIP_DEBUG If it is giving an error message after the HELOline,
talk to the administer of the machine for the appropriate value to placein SMIP_DOVAI N. If you
do not define this macro, it will default to MY_| P_ ADDRESS.

#defi ne SMIP_DOVAI N "somemachi ne. somedonai n. cont

SMIP_SERVER

This macro defines the mail server that will relay the controller’s mail. This server must be config-
ured to relay mail for your controller. You can either place afully qualified domain name or an IP
addressin thisfield.

#define SMIP_SERVER "nmi | . nydomai n. cont
or

#defi ne SMIP_SERVER "10. 10. 6. 19"

SMIP_TI MEQUT

This macro tellsthe SMTP code how long in seconds to try to send the e-mail before timing out. It
defaults to 20 seconds.

#define SMIP_TI MEQUT 10

188 TCP/IP User's Manual

8.3 Functions

st p_sendnai |

void sm p_sendmail (char* to, char* from char* subject, char*

message) ;

DESCRIPTION

Thisfunction initializesthe internal data structures with stringsfor theto e-mail address,
thefrom e-mail address, the subject, and the body of the message. You should not modify
these strings until sit p_nai | ti ck no longer returns SMIP_PENDI NG

PARAMETERS
to
from
subj ect

message

RETURN VALUE
None.

LIBRARY
SMTP. LI B

String containing the e-mail address of the destination.
String containing the e-mail address of the source.
String containing the subject of the message.

String containing the message. (This string must NOT contain the
byte sequence "\r\n.\r\n" (CRLF.CRLF), asthisisused to mark the
end of the e-mail, and will be appended to the e-mail automatically.)

Chapter 8: SMTP Mail Client

189

snt p_sendmai | xmem

void smp_sendmai |l xmen(char* to, char* from char* subject,
| ong nessage, int nessagel en);

DESCRIPTION

Thisfunction initializesthe internal data structures with stringsfor the to e-mail address,
thefrom e-mail address, the subject, and the body of the message. You should not modify
these strings until st p_nai | ti ck nolonger returns SMIP_PENDI NG

PARAMETERS
to String containing the e-mail address of the destination.
from String containing the e-mail address of the source.
subj ect String containing the subject of the message.
message Physical address in xmem containing the message. (The message

must NOT contain the byte sequence "\n\n.\r\n" (CRLF.CRLF), as
thisis used to mark the end of the e-mail, and will be appended to
the e-mail automatically.)

messagel en Length of the message in xmem.

RETURN VALUE
None.

LIBRARY
SMIP. LI B

190 TCP/IP User's Manual

sntp_mailtick
int smp_miltick(void);

DESCRIPTION

Repetitively call thisfunction until e-mail is completely sent. For a small message, this
function will need to be called about 20 timesto send the message. The number of times
will vary depending on the latency of you connection to the mail server and the size of

your message.

RETURN VALUE

SMTP_SUCCESS - e-mail sent.

SMTIP_PENDI NG- e-mail not sent yet call st p_nmi | ti ck again.
SMIP_TI ME - e-mail not sent within SMIP_TI MEQUT seconds.
SMTIP_UNEXPECTED - received an invalid response from SMTP server.

LIBRARY
SMIP. LI B

snt p_status
int smp_status(void);

DESCRIPTION
Return the status of the last e-mail processed.

RETURN VALUE

SMI'P_SUCCESS - e-mail sent.

SMTIP_PENDI NG- e-mail not sent yet call smtp_mailtick again.
SMIP_TI ME - e-mail not sent within SMIP_TI MEQOUT seconds.
SMTIP_UNEXPECTED - received an invalid response from SMTP server.

LIBRARY
SMTP. LI B

Chapter 8: SMTP Mail Client

191

8.4 Sample Sending of an E-mail
This program, smt p. ¢, usesthe SMTP library to send an e-mail.

[* Change these nmacros to the appropriate values or change

* the snmp_sendnail(...) call in main() to reference your val ues.
*/

#defi ne FROM "myaddr ess@rydomai n. cont'

#define TO "myaddr ess@rydomai n. cont'

#define SUBJECT "test nmmil"

#def i ne BODY "You' ve got mail!"

/* Change these values to your network settings */
#define My_| P_ADDRESS "10. 10. 6. 100"

#defi ne MY_NETMASK " 255. 255. 255. 0"

#defi ne MY_GATEWAY "10.10. 6. 19"

/* SMIP_SERVER tells DCRTCP where your mail server is. This
* val ue can be the nane or the I P address. */

#defi ne SMIP_SERVER "mymai | server. nydonai n. cont'
/| #defi ne SMIP_DOVAI N "mycontrol | er. mydonai n. cont'
/| #def i ne SMIP_DEBUG

#memap xmem

#use dcrtcp.lib

#use smp.lib

mai n() {
sock _init();

sntp_sendmai | (FROM TO, SUBJECT, BODY);

whil e(sntp_mailtick()==SMIP_PENDI NG
conti nue;

i f(snmp_status()==SMIP_SUCCESS)
printf("Message sent\n");

el se
printf("Error sendi ng nmessage\n");

192 TCP/IP User's Manual

POP3 Client 9

Post Office Protocol version 3 (POP3) is probably the most common way of retrieving e-mail
from aremote server. Most e-mail programs, such as Eudora, M S-Outlook, and Netscape's e-mail
client, use POP3. The protocol isafairly simple text-based chat across a TCP socket, normally
using TCP port 110.

There aretwo ways of using POP3. LI B. The first method provides a raw dump of the incoming
e-mail. Thisincludes all of the header information that is sent with the e-mail, which, while some-
times useful, may be more information than is needed. The second method provides a parsed ver-
sion of the e-mail, with the sender, recipient, subject-line, and body-text separated out.

In both methods, each line of e-mail has CRLF stripped from it and ‘\O" appended to it.

9.1 Configuration
The POP3 client can be configured through the following macros:

POP_BUFFER_SI ZE
Thiswill set the buffer size for POP_PARSE EXTRA in bytes. These are the buffers that hold the
sender, recipient and subject of the e-mail. POP_BUFFER_SI ZE defaults to 64 bytes.

POP_DEBUG
Thiswill turn on debug information. It will show the actual conversation between the device and
the remote mail server, aswell as other useful information.

POP_NODELETE
Thiswill stop the POP3 library from removing messages from the remote server as they are read.
By default, the messages are del eted to save storage space on the remote mail server.

POP_PARSE_EXTRA

Thiswill enable the second mode, creating a parsed version of the e-mail as mentioned above. The
POP3 library parses the incoming mail more fully to provide the Sender, Recipient, Subject, and
Body fields as separate items to the call-back function.

9.2 Three Steps to Receive E-mail.

1. pop3_ini t () iscalledto provide the POP3 library with a call-back function. This call-back
will be used to provide you the incoming data. This function isusually called once.

2. pop3_get mai | () iscaledto start the e-mail being received, and to provide the library with
e-mail account information.

3. pop3_tick() iscaledaslong asit returns POP_PENDI NG to actually run the library. The
library will call the function you provided several timesto give you the e-mail.

Chapter 9: POP3 Client 193

9.3 Call-Back Function

There are two types of call-back functions, depending on if POP_PARSE_EXTRA is defined and
will be handled separately.

9.3.1 Normal call-back
When not using POP_PARSE_EXTRA, you need to provide a function with the following proto-
type:

int storemail (i nt nunber, char *buf, int size);

nunber isthe number of the e-mail being transferred, usually 1 for the first, 2 for the second, but
not necessarily. The numbers are only guaranteed to be unique between all e-mails transferred.

buf isthetext buffer containing one line of the incoming e-mail. This must be copied out imme-
diately, asthe buffer will be different when the next line comesin, and your call-back is called

again.
si ze isthe number of bytesin buf .

See pop. ¢ inthe Dynamic C Sample folder for an example of this style of call-back.

9.3.2 POP_PARSE_EXTRA call-back
If POP_PARSE_EXTRA isdefined, you need to provide a call-back function with the following
prototype:

int storemail (int nunber, char *to, char *from char *subject,
char *body, int size);

nunber, body, and si ze are the same as before.

t 0 hasthe e-mail address of who this e-mail was sent to.
f r omhas the e-mail address of who sent this e-mail.
subj ect hasthe subject line of the e-mail.

These new fields should only be used the first time your call-back is called with anew nunber
field. In subsequent calls, these fields are not guaranteed to have accurate information.

Seepar se_extra. c in Section 9.5 for an example of this type of call-back.

194 TCP/IP User's Manual

9.4 Functions

pop3_init
int pop3_init(int (*storemail)());

DESCRIPTION

This function must be called before any other POP3 function iscalled. It will set the call-
back function where theincoming e-mail will be passed to. This probably should only be
caled once.

PARAMETERS
storenui | A function pointer to the call-back function.

RETURN VALUE

0: Success;
1: Failure.

LIBRARY
POP3. LI B

Chapter 9: POP3 Client 195

pop3_get mai |
int pop3_getmail (char *username, char *password, |ong server);

DESCRIPTION

This function will initiate receiving e-mail (a POP3 request to aremote e-mail server).
IMPORTANT NOTE - the buffersfor user name and passwor d must NOT change
until pop3_ti ck() returnssomething besides POP_PENDI NG These values are not
saved internally, and depend on the buffers not changing.

PARAMETERS
user nane Theuser name of the account to access.
passwor d The passwor d of the account to access.
server The IP address of the server to connect to, as returned fromr e-

sol ve().

RETURN VALUE

0: Success;
1: Failure.

LIBRARY
POP3. LI B

pop3_tick
int pop3_tick(void)

DESCRIPTION

A standard tick function, to run the daemon. Continue to cal it aslong asit returns
POP_PENDI NG

RETURN VALUE

POP_PENDI NG Transfer isnot done; call pop3_ti ck again.

POP_SUCCESS: All e-mails were received successfully.

POP_ERROR: Unknown error occurred.

POP_TI ME: Sessiontimed-out. Try again, or use POP_TI MEQUT to increase thetime-
out length.

LIBRARY
POP3. LI B

196 TCP/IP User's Manual

9.5 Sample receiving of e-mail
par se_extr a. ¢ connectsto a POP3 server and downloads e-mail form it.

#define MY_I P_ADDRESS " 10. 10. 6. 105" /'l change these configuration nacros
#def i ne MY_NETMASK "255.255.255.0" // to match your host.

#defi ne MY_GATEWAY "10.10.6.1"

#defi ne MY_NAMESERVER "10. 10. 6. 254"

#def i ne POP_HOST mmai | . domai n. com //enter the name of your POP3 server

#defi ne POP_USER "nynang" [/ enter usernane for POP3 account
#def i ne POP_PASS "secret" [/ enter password for POP3 account

#def i ne POP_PARSE_EXTRA
#menmmap xnem

#use "dcrtcp.lib"

#use "pop3.lib"

int n;

int storemsg(int num char *to, char *from char *subject, char *body, int
I en) {

}

#GLOBAL_INIT{n = -1;}
if(n!= nunm {
n = num

printf (" RECElI VI NG MESSAGE <%I>\n", n);
printf("\tFrom %\n", from;
printf("\tTo: %\n", to);
printf("\tSubject: %\n", subject);

}

printf("MSG DATA> '%'\n", body);

return O;

mai n() {

static | ong address;
static int ret;

sock_init();
pop3_init(storensqg); //set up call-back function

printf("Resol ving nane...\n");

address = resol ve(POP_HOST) ;

printf("Calling pop3_getmail()...\n");

pop3_get mai | (POP_USER, POP_PASS, address); // POP3 request to server

printf("Entering pop3_tick()...\n");
while((ret = pop3_tick()) == POP_PENDI NG
conti nue;
i f(ret == POP_SUCCESS)
printf("POP was successful!'\n");
if(ret == POP_TI ME)
printf("POP timed out!\n");
if(ret == POP_ERROR)
printf("POP returned a general error!\n");

printf("Al done!\n");

Chapter 9: POP3 Client 197

9.5.1 Sample Conversation
The following is an example POP3 session from the specification in RFC1939. For more informa-

tion see:
http://ww. rfc-editor.org/rfc/std/std53.txt

In the following example, lines starting with ‘' S:” are the server’s message, and lines starting with
‘C:" arethe client’s messages.

S.

<wait for connection on TCP port 110>

C. <open connecti on>

+OK POP3 server ready <1896.697170952@lbc. ntvi ew. ca. us>
APOP nrose c4c9334bac560ecc979e58001b3e22f b

+OK nrose's naildrop has 2 nessages (320 octets)

STAT

+COK 2 320

LI ST

+OK 2 nessages (320 octets)

1 120

2 200

RETR 1
+OK 120 octets
<t he POP3 server sends nessage 1>

DELE 1

+OK nessage 1 del eted

RETR 2

+OK 200 octets

<t he POP3 server sends nessage 2>

DELE 2
+OK nessage 2 del eted

QT
+OK dewey POP3 server signing off (nmaildrop enpty)

<cl ose connecti on>
<wait for next connection>

For debugging purposes, you can observe this conversation by defining POP_DEBUG at the top of

your program.

198

TCP/IP User's Manual

http://www.rfc-editor.org/rfc/std/std53.txt

Telnet 10

Thelibrary Vseri al . | i b implements the telecommunications network interface, known as tel-
net. Thisimplementation is atelnet to serial and serial to telnet gateway.

10.1 Configuration Macros

SERI AL_PORT_SPEED
The baud rate of the serial port. Defaults to 115,200 bps.

TELNET_COCKED

#def i ne thisto have telnet control codes stripped out of the data stream (useful if you are actu-
ally Telneting to the device from another box; should probably NOT be defined if you are using
two devices as a transparent bridge over the Ethernet).

10.2 Functions

Chapter 10: Telnet 199

int telnet _tick(void);
DESCRIPTION
Must be cdled periodically to run the daemon.

RETURN VALUE
0: Success (cdl it again);
1: Failure; TELNET_CONNECT died, or afatal error occurred.

LIBRARY
VSERI AL. LI B

void telnet_close(void);

DESCRIPTION

Terminates any connections currently open, and shuts down the daemon.

LIBRARY
VSERI AL. LI B

200 TCP/IP User's Manudl

10.3 An Example Telnet Server

/*

* Tel net Server: Listens on a telnet port for a connection
* transparently passes data on to the serial port

*/

/[l Initilize the | P address/etc as usua
#defi ne My_| P_ADDRESS "10. 10. 6. 105"
#defi ne MY_NETMASK "255. 255. 255. 0"
#defi ne MY_GATEWAY "10. 10. 6. 19"

#defi ne MY_NAMESERVER "10. 10. 6. 19"

#def i ne SERI AL_PORT_SPEED 115200

/*

* W want RAWdata, leaving in any telnet/etc control codes.
* (this is a raw data port). #define this to cook the input.
*/

#undef TELNET_COOKED

#menmap xmem
#use "dcrtcp.lib"

#use "vserial .lib"

/*

* TCP Port to listen on. O defaults to normal telnet port
*/

#def i ne SERVER PORT 0O

mai n() {
sock_init(); // Init TCP/IP

and

tel net init(TELNET LI STEN, O, SERVER PORT); //Init Vserial server

/1 Loop on telenet tick() to run server; this is non-bl ocking

while(!'tel net _tick())
conti nue;

[l Error happened, close telnet connection (shouldn't happen)

tel net _cl ose();

Chapter 10: Telnet

201

10.3.1 A Sample Client To Connect to the Server

/1l dient.c Connects to above server, at given |P address and port

#def i ne My_| P_ADDRESS "10. 10. 6. 105"
#def i ne MY_NETMASK " 255. 255. 255. 0"
#def i ne MY_GATEWAY " 10. 10. 6. 19"

#def i ne MY_NAMESERVER " 10. 10. 6. 19"

/1 Set the speed of the serial port
#def i ne SERI AL_PORT_SPEED 115200

#undef TELNET COOKED
#memap xmem

#use "dcrtcp.lib"
#use "vserial .lib"

/[l TCP Port to connect to. O defaults to normal telnet port
#defi ne SERVER PORT 0

// Renmpte |IP to connect to.
#def i ne REMOTE_HOST "10. 10. 6. 19"

mai n() {
sock_init();
/*
* |nit the VSerial server to connect, and reconnect if the
* connection is | ost
*/
tel net i nit (TELNET _RECONNECT, r esol ve(REMOTE_HOST) , SERVER PORT) ;

/1 Loop on telenet tick() to run it; this is non-bl ocking
while(!'telnet tick())
conti nue;

[l Error happened, we get here - close it (shouldn't happen)
tel net _cl ose();

202 TCP/IP User's Manual

General Purpose Console 11

11.1 Introduction
Thelibrary, Zconsol e. | i b, implements a serial-based console that can:

e Configure a board.

* Upload and download web pages.

* Change web page variables without re-uploading the page.
* Send e-mail.

11.2 Console Features

Recognizing that embedded control systems are wide-ranging in their requirements, Zcon-

sol e. | i b was designed with flexibility and extensibility in mind. Designers can choose the
available functionality they want and leave the rest alone. The Console includes:

» A fail-safe backup system for configuration data.

e Defaul 1Tt4(e)]TI/T9 1 Tf2.90110 TD 0 Tc ()Tj /F5 1 Tf 0.2527 0 TD 0.0065 Tc [(in)dest

Chapter 11: General Purpose Console 203

11.3 Console Commands and Messages

The Console is a command-driven application. A command isissued either at the keyboard using
aterminal emulator or acommand is generated and sent from an attached machine. The Console
carries out the command, and either the message “ OK” \r\n is returned, or an error isreturned in
the form of:

ERROR XXXX Thisisan error message.\r\n

Note that the carriage return and new line characters (\r\n) are always returned by the Console
whether the command completed successfully or not.

11.3.1 Console Command Data Structure
The command system is set up at compile time with an array of Consol eCommand structures.
There isone array entry for each command recognized by the Console.
t ypedef struct {
char* conmand;
int (*cndfunc)();
| ong hel pt ext;
} Consol eComrand

command

Thisfield isastring like the following: “SET MAIL FROM “. That is, each word of the command
is separated by a space. The case of the command does not matter. Entering this string is how the
command is invoked.

cmdfunc
Thisfield is afunction pointer to the function that implements the command. The functions that
come with the Console are listed in Section 11.3.3.1 on page 206.

helptext

Thisfield points to atext file. The text file contains help information for the associated command.
When HELP COVIMAND is entered, this text file (the help information for COMMAND) will be
printed to the Console. The help text comes from #xi npor t ed text files.

11.3.1.1 Help Text for General Cases
There aretwo casesin Zconsol e. | i b where help text is needed, but is not associated with a
particular command. It is till

204 TCP/IP User’'s Manual

11.3.2 Console Command Array

An array of Consol eConmmand structures must be defined in an application program as a con-
stant global variable named consol e_commands|] . All commands available at the Console,
those provided in Zconsol e. | i b and custom commands, must have an entry in this array.

11.3.3 Console Commands

Thefollowing isalist of the commands provided by Zconsol e. | i b. When the command name
{i.e., the string in the conmand field) is received by the Console, the function pointed to in the
cmdf unc field is executed. When the Consol e receives the command, HEL P <command name>,
the text file located at physical address hel pt ext will be displayed.

const Consol eCommand consol e_commands[] =

{

"HELLO WORLD', hello_world, 0 },

"ECHO', con_echo, hel p_echo_txt },

"HELP", con_hel p, help_help_txt },

"", NULL, help_txt },

"SET", NULL, help_set_txt },

"SET PARAM', con_set_param O },

"SET IP", con_set_ip, help_set_txt },

"SET NETMASK", con_set _netnmask, hel p_set _txt },

"SET GATEWAY", con_set_gateway, hel p_set _txt },

"SET NAMESERVER', con_set naneserver, hel p_set_txt },

"SET MAIL", NULL, help_set_rmail _txt },

"SET MAI L SERVER', con_set _nmil _server, hel p_set_mil _server_txt },
"SET MAIL FROM', con_set_mail _from help_set _mail_fromtxt },
"SHOW, con_show, hel p_show txt },

"PUT", con_put, help_put_txt },

"CGET", con_get, help_get_txt },

"DELETE", con_delete, help_delete txt },

"LIST", NULL, help_list_txt },

"LI ST FILES", con_list files, help_list_txt },

"LI ST VARI ABLES", con_list_variables, help_ list _txt },
"CREATEV', con_createv, help_createv_txt },

"PUTV', con_putv, help_putv_txt },

"CGETV', con_getv, help_getv_txt },

"MAIL", con_mail, help_mil _txt },

"RESET FILES", con_reset files, 0}

"RESET VARI ABLES”, con_reset_variables, help_reset_variables }

Lot Rt Nt Wt W et Wt W e W e R e e N et W W e W et W W e W W e W W e Wt

Chapter 11: General Purpose Console 205

11.3.3.1 Default Command Functions
The following functions are provided in Zconsol e. | i b. Each one takes a pointer to a Con-
sol eSt at e structure asits only parameter, following the prototype for custom functions
described in Section 11.3.3.2 on page 209. Each of these functions return O when it has more pro-
cessing to do (and thus will be called again), 1 for successful completion of itstask, and - 1 to
report an error.

Parameters needed by the commands using these functions are passed on the command line.

con_createv()
Thisfunction creates a variable that can be used with SSI commandsin SHTML files. Certain SSI
commands can be replaced by the value of this variable, so that aweb page can be dynamically
altered without re-uploading the entire page. Note, however, that the value of the variable is not
preserved across power cycles, athough the variable entry is still preserved. That is, the value of
the variable may change after a power cycle. It can be changed again, though, with aput v com-
mand. It worksin the following fashion (if the command is called “ CREATEV"):

usage: "createv <varnane> <vartype> <format> <val ue> [strlen]"
A web variable that can be referenced within web filesis created.
<var nane> isthe name of the variable
<vart ype> isthetype of thevariable (I NT8, | NT16, | NT32, FLOAT32, or STRI NG
<f or mat > isthe printf-style format specifier for outputting the variable (such as "%d")
<val ue> isthevaueto assign the variable.

[strlen] isonly usedif thevariableis of type STRI NG It is used to give the maximum length
of the string.

con_delete()

Thisfunction deletes a file from the file system. The command that uses this function takes one
parameter: the name of the file to delete.

con_echo()

This function turns on or off the echoing of characters on aparticular 1/0 stream. That is, it does
not affect echoing globally, but only for the 1/O stream on which it isissued. The command that
uses this function takes one parameter: ON | OFF.

con_get()

Thisfunction displays afile from the file system. It works in the following fashion (if the com-
mand iscalled “GET"):

* ASCII mode: usage: "get <filename>"

Thefile isthen sent, followed by the usual OK message.
* BINARY mode: usage: "get <filename> <sizein bytes>"

Themessage "LENGTH <len>" will be sent, indicating length of the file to be sent, and then the
file will be sent, but not more than <size in bytes> bytes.

206 TCP/IP User’'s Manual

con_getv()

This function displays the value of the given variable. The variable is displayed using the printf-
style format specifier given inthe cr eat ev command. The command that uses this function
takes one parameter: the name of the variable.

con_help()

This function implements the help system for the Console. The command that uses this function
takes one parameter: the name of another command. The Console outputs the associated help text
for the requested command. The help text is the text file referenced in the third field of the Con-
sol eCommand structure.

con_list_files()
Thisfunction lists the files in the filesystem and their file sizes. The command that uses this func-
tion takes no parameters.

con_list_variables()
This function displays the names and types of al variables. The command that uses this function
takes no parameters.

con_mail()
This function sends mail. If the command that uses this function is named mail, the usageis.
"mai | desti nati on@here. cont

Thefirst line of the message will be used as the subject, and the other lines are the body. The body
isterminated with a”D or *Z (0x04 or 0x1A).

con_put()
Thisfunction creates a new filein the file system for use with the HTTP server. It worksin the fol -
lowing fashion (if the command is called “PUT"):

* ASCII mode: usage: "put <filename>"
Thefileisthen sent, terminating with a”D or ~Z (0x04 or 0x1A).

* BINARY mode: usage: "put <filename> <size in bytes>"
Thefileisthen sent, and must be exactly the specified number of bytesin length.

Note that ASCII mode is only useful for text files, since the Console will ignore non-displayable
characters. In binary mode, the put command will time out after CON_TI MEQUT seconds of inac-
tivity (60 by default).

con_putv()
This function updates the value of a variable. The command that uses this function takes two
parameters: the name of the variable, and the new value for the variable.

con_reset_files
This function removes all web files.

con_reset_variables
This function removes all web variables.

Chapter 11: General Purpose Console 207

con_set_gateway()
This function changes the gateway of the board. The command that uses this function takes one
parameter: the new gateway in dotted quad notation, e.g., 192.168.1.1.

con_set_ip()
This function changes the | P address of the board. The command that uses this function takes one
parameter: the new IP address in dotted quad notation, e.g., 192.168.1.112.

con_set param

This function sets the parameter for the current 1/0O device. Depending on the 1/O device, this
value could be a baud rate, a port number or a channel number. The command that uses this func-
tion takes one parameter: the value for the 1/0O device parameter.

con_set_mail_from

This function sets the return address for al e-mail messages. This address will be added to the out-
going e-mail and should be valid in case the e-mail needs to be returned. The command that uses
this function takes one parameter: the return address.

con_set_mail_server
This functions identifies the SMTP server to use. The command that uses this function takes one
parameter: The IP address of the SMTP server.

con_set_netmask()

This function changes the netmask of the board. The command that uses this function takes one
parameter: the new netmask in dotted quad notation, e.g., 255.255.255.0.

con_show()

This function displays the current configuration of the board (1P address, netmask, and gateway).
If the devel oper’s application has configuration options she would like to show other than the IP
address, netmask, and gateway, she will prabably want to implement her own version of the show
command. The new show command can be modelled after con_show() in ZConsol e. | i b. The
command that uses this function takes no parameters.

208 TCP/IP User’'s Manual

11.3.3.2 Custom Console Commands
Developers are not limited to the default commands. A custom command is easy to add to the
Console; simply create an entry for itinconsol e_commands|[] . Thethree fields of this entry
were described in Section 11.3.1. Thefirst field is the name of the command. The second field is
the function that implements the command. This function must follow this prototype:

int function_nanme (Consol eState* state);

The parameter passed to the function isastructure of type Consol eSt at e. Some of thefiddsin
this structure must be manipulated by your custom command function, other fields are used by
Zconsol e. | i b and must not be changed by the your program.

t ypedef struct {
i nt consol e_nunber;
Consol el O coni o;
i nt state;
int | aststate;

char comuand[CON_CMD_SI ZE] ;

char* crdptr;

char buffer[CON BUF SIZE]; // Use for reading in data.
char* bufferend; /1l Use for reading in data.

Consol eCommand* cndspec;

int sawcr;

i nt sawesc;

i nt echo; /1l Check if echo is enabled, or change it.
i nt substat e;

unsigned int error;

int nunparans; // Read-only: check # of parms in command.
char cnddat a[CON_CVD_DATA_SI ZE] ;

Fil eNurber filenum // Use for file processing.

File file; /1 Use for file processing.
i nt spec; /1 Use for working with Zserver entities
| ong timeout; /1l Use for extending the tineout.

} Consol eSt at e;

To accomplish its tasks, the function should use st at e- >subst at e for its state machine
(which will beinitialized to zero before dispatching the command handler), and

st at e- >conmand to read out the command buffer (to get other parameters to the command, for
instance). In case of error, the function should set st at e- >er r or to the appropriate value. The
buffer at st at e- >cnddat a is available for the command to preserve data across invocations of
the command’s state machine. The size of the buffer is adjustable viathe CON_CVD_DATA _SI ZE
macro (set to 16 bytes by default). Generally this buffer areawill be cast into a data structure
appropriate for the given command state machine.

IMPORTANT: The fields discussed in the previous paragraph and the fields that have commentsin
the structure definition are the only ones that an application program should change. The other
fields must not be changed.

The function should return O when it has more processing to do (and thus will be called again), 1
for successful completion of itstask, and -1 to report an error.

Chapter 11: General Purpose Console 209

Thethird and final field of theconsol e_commands[] entry isthe physical address of the help
text file for the custom command in question. This file must be #xi npor t ed, along with all of
the default command function help files that are being used.

11.3.4 Console Error Messages

The Console library provides alist of default error messages for the default Console commands.
An application program must define an array for these error messages, aswell as for any custom
error messages that are desired. To include only the default error messages, the following array is
sufficient:

const Consol eError console_errors[] = {
CON_STANDARD ERRCRS // includes all default error nessages
}

11.3.4.1 Default Error Messages

These are the error codes for the default error messages and the text that will be displayed by the
Console if the error occurs.

#defi ne CON_ERR_TI MEQUT 1
#def i ne CON_ERR_BADCOMVAND 2
#defi ne CON_ERR_BADPARAMETER 3
#defi ne CON_ERR NAMETOOLONG 4
#defi ne CON_ERR _DUPLI CATE 5
#defi ne CON_ERR_BADFI LESI ZE 6
#defi ne CON_ERR_SAVI NGFI LE 7
#defi ne CON_ERR_READI NGFI LE 8
#defi ne CON_ERR_FI LENOTFOUND 9
#defi ne CON_ERR_MSGTOOLONG 10
#defi ne CON_ERR_SMIPERROR 11
#defi ne CON_ERR_BADPASSPHRASE 12
#def i ne CON_ERR_CANCELRESET 13

#defi ne CON_ERR_BADVARTYPE 14
#defi ne CON_ERR BADVARVALUE 15
#defi ne CON_ERR_NOVARSPACE 16

#define CON_ERR VARNOTFOUND 17
#defi ne CON_ERR_STRI NGTOOLONG 18
#defi ne CON_ERR NOTAFI LE 19
#defi ne CON_ERR_NOTAVAR 20
#defi ne CON_ERR_COMMANDTOOLONG 21
#defi ne CON_ERR BADI PADDRESS 22

210 TCP/IP User’'s Manual

#defi ne CON_STANDARD ERROCRS \
{ CON_ERR TI MEQUT, "Timed out." },\
{ CON_ERR_BADCOMMVAND, "Unknown command." },\
{ CON_ERR BADPARAMETER, "Bad or m ssing paraneter.” },\
{ CON_ERR_NAMETOOLONG, "Filenane too long." },\
{ CON_ERR DUPLI CATE, "Duplicate object found." },\
{ CON_ERR BADFI LESI ZE, "Bad file size." },\
{ CON_ERR SAVI NGFI LE, "Error saving file." },\
{ CON_ERR READI NGFILE, "Error reading file." },\
{ CON_ERR _FI LENOTFOUND, "File not found." },\
{ CON_ERR _MSGTOOLONG, "Mnil nessage too long." },\
{ CON_ERR SMIPERROR, "SMIP server error." },\
{ CON_ERR BADPASSPHRASE, "Passphrases do not match!" },\
{ CON_ERR CANCELRESET, "Reset cancelled." },\
{ CON_ERR BADVARTYPE, "Bad variable type." },\
{ CON_ERR BADVARVALUE, "Bad variable value." },\
{ CON_ERR_NOVARSPACE, "Qut of variable space.” },\
{ CON_ERR VARNOTFQUND, "Variable not found." },\
{ CON_ERR STRI NGTOOLONG, "String too long." },\
{ CON_ERR NOTAFILE, "Not a file." },\
{ CON_ERR NOTAVAR, "Not a variable." },\
{ CON_ERR_COVMANDTOOLONG, "Command too long." },\
{ CON_ERR BADI PADDRESS, "Bad | P address." }

11.3.4.2 Custom Error Messages

Developers can create their own error messages by following the format of the default error mes-
sages. The error code numbers should be greater than 1,000 to save room for expansion of built-in
error messages.

#defi ne NEW ERROR 1001

const Consol eError console_errors[] = {
CON_STANDARD ERRCRS, // includes all default error nessages
{ NEWERROR, "Any error nessage | want." }

}
The default error messages should beincluded in consol e_error s[] aong with any custom
error messages that are used since the commands that come with Zconsol e. | i b each expect
their own particular error message.

Chapter 11: General Purpose Console 211

11.4 Console I/O Interface

Multiple I/O methods are supported, as well as the ability to add custom 1/O methods. An array of
Consol el Ostructures must be defined in the application program and named consol e_i o[] .
This structure holds handlers for common 1/O functions for the 1/0 method.

t ypedef struct {
long param // Baud for serial, port for telnet, etc.
int (*open) ();
int (*close)();
int (*tick) ();
int (*puts) ();
int (*rdUsed) ();
int (*wUsed) ();
int (*wFree) ();
int (*read) ();
int (*wite) ();

} Consol el G

11.4.1 How to Include an I/O Method
Each supported I/0O method is determined at compile time, i.e., each supported 1/O method must
haveanentryinconsol e_i o[].

11.4.2 Predefined I/0O Methods

Several predefined I/0O methods arein Zconsol e. | i b. They will beincluded by entering their
respective macrosinconsol e_i o[] .
const Consol el O console_io[] = {
CONSOLE | O SERA(baud rate),
CONSOLE | O SERB(baud rate),
CONSOLE | O _SERC(baud rate),
CONSOLE | O_SERD(baud rate),
CONSOLE | O_SP(channel nunber),
CONSOLE | O TELNET(port nunber),

}

The macros expand to the appropriate set of pre-defined handler functions, e.g.,

#def i ne CONSOLE_| O SERA(param) { param ser Aopen, serAcl ose, NULL,
coni o_ser Aputs, serArdUsed, serAw Used, serAw Free, serAread, serAwite}

11.4.2.1 Serial Ports

There are predefined 1/0 methods for all four of the seria ports on a Rabbit board. The baud rateis
set by passing it to the macro. See above.

11.4.2.2 Telnet
The Console runs atelnet server. The port number is passed to the macro CONSCLE | O TELNET.
The user telnets to the controller that is running the Console.

212 TCP/IP User’'s Manual

11.4.2.3 Slave Port

The Rabbit slave port is an 8-bit bidirectional data port. The Console runs on the slave processor.
Two drivers are needed.

11.4.2.3.1 Slave Port Driver
The dave port driver isimplemented by SLAVE PORT. LI B. For an application to use the dave
port:
* Thedriver must beinstalled by including the library in the program.
* AcaltoSPi nit (nmode) must be madeto initialize the driver.
* A function to process Console commands sent to the slave port must be provided.

The dave port has 256 channels, separate port addresses that are independent of one ancther. A
handler function for each channel that is used must be provided. For details on how to do this,
please see the Dynamic C User’s Manual.

A stream-based handler, SPShandl er (), to process Console commands for the slaveis pro-

Chapter 11: General Purpose Console 213

11.5.1 File System Initialization
The Console depends on the file system that isincluded with Dynamic C. Besides including the
library and defining the macro that directs the file system to EEPROM memory:

#define FS_FLASH
#use "Fil eSystemlib"

the application program must initialize the file system with acal tofs_init ().

11.5.2 Serial Buffers

If the pre-defined serial 1/0 methods are used, the circular buffers used for 1/0O data can be resized
from their default values of 31 bytes by using macros. For example, if CONSOLE_| O_SERI ALC
isincludedinconsol e_i o[], then lines similar to the following can be in the application pro-
gram:

#defi ne Cl NBUFSI ZE 1023
#def i ne COUTBUFSI ZE 255

In general, these buffers can be smaller for slower baud rates, but must be larger for faster baud
rates.

11.5.3 Using TCP/IP

To use the TCP/IP functionality of the Console you must have the following line in your applica-
tion program:

#use “dcrtcp.lib”

If you are serving web pages you must also includeht t p. | i b, and if you are sending e-mail you
must includesnt p. 1 b.

214 TCP/IP User’'s Manual

11.5.4 Required Console Functions
To run the Console, the following two functions are required.

console_init
int console_init(void);

DESCRIPTION
This function will initialize the Console.

RETURN VALUE

0: Success;
1: Error.

consol e_tick
voi d console_tick(void);

DESCRIPTION

Thisfunction needsto be called periodically in an application program to alow the Con-
soletime for processing.

11.5.5 Console Execution Choices

The Console can be used interactively with aterminal emulator or programatically by sending
commands from a program running on a device connected to the controller that is running the
Console.

11.5.5.1 Terminal Emulator

To manually enter Console commands from a keyboard and view resultsin the stdio window you
must:

1. Run Dynamic C, version 7.5 or later.

2. Open aterminal emulator. Windows HyperTerminal comes with Windows. It does not
work with binary files, only ASCII. TeraTerm, available for free download at

http:// hp.vector.co.jp/authors/VA002416/teraterm ht nl

can handle both ASCII and binary. Configure the terminal emulator as follows:

COM port (1 or 2) to which 3-wire serial cable is connected
Baud Rate 57,600 bps

DataBits 8

Parity None

Stop Bits 1

Flow Control None

Chapter 11: General Purpose Console 215

http://hp.vector.co.jp/authors/VA002416/teraterm.html

The terminal emulator should now accept Console commands.

To avoid losing a<LF> at the beginning of afile when using thecon_put command function,
select Setup->Terminal from the Tera Term menu and set the Transmit option to CR+LF. This
option might be located el sewhere if you are using a different terminal emulator.

11.6 Backup System

The Console can save configuration parameters to the file system so that they are available across
power cycles. The backup processis done by con_backup() . Unlike the other console com-
mand functions, con_backup() does not take a parameter and it returns O if the backup was
successful and 1 if it was not. Thisfunctionis called by several of the console command functions
that change configuration parameters, or that add or delete files or variables from the file system.
Caution is advised when calling con_backup() sinceit writesto flash memory.

11.6.1 Data Structure for Backup System
The developer must define an array called consol e_backup[] of Consol eBackup struc-
tures.
t ypedef struct {
voi d* dat a;
int |en;
void (*postload)();
void (*presave)();
} Consol eBackup;

data
Thisis apointer to the data to be backed up.

len
Thisis how many bytes of data need to be backed up.

post|madumstion pointer to afunction that is called after configuration datais loaded, in case the
devel oper needs to do something with the newly loaded configuration data.

presave
Thisisafunction pointer that is called just before the configuration datais saved so that the devel-
oper can fill in the data structure to be saved. The functions referenced by post | oad() and
pr esave() should have the following prototype:
void ny_prel oad(voi d* dataptr);

Thedat apt r parameter is the address of the configuration data (the same as the data pointer in
the Consol eBackup structure).

216 TCP/IP User’'s Manual

11.6.2 Array Definition for Backup System

const Consol eBackup consol e_backup[] = {
CONSOLE_BASI C BACKUP, // echo state, baud-rate/port number
CONSCLE_TCPI P_BACKUP,
CONSCLE_HTTP_BACKUP,
CONSOLE_SMTP_BACKUP
{ nmy_data, ny_data_len, ny_prel oad, ny_presave }

}
CONSOLE_BASI C_BACKUP causes backup of the echo state (on or off), baud rate and port num-
ber information.

CONSOLE_TCPI P_BACKUP causes backup of the | P addresses of the controller board and the IP
address of its netmask, gateway and name server.

CONSOLE_HTTP_BACKUP causes backup of the files and variables visible to the HTTP server.
CONSOLE_SMTP_BACKUP causes backup of the mail configuration.

11.7 Console Macros
Zconsol e. | i b offers many macros that change the behavior of the Console.

CON_CMD_SIZE
Changes the size of the command buffer that is allocated for each 1/0 method. Thislimitsthe
length of acommand line. It is allocated in root data space. Defaults to 128 bytes.

CON_BUF_SIZE
Changes the size of the data buffer that is allocated for each 1/0 method. If the baud rate or trans-
fer speed istoo great for the Console to keep up, then increasing this value may help avoid
dropped characters. It is allocated in root data space. It defaults to 1024 bytes.

CON_CMD_DATA_SIZE
Adjusts the size of the user data area within the state structure so that user commands can preserve
arbitrary information across calls. It is alocated in root data space. Defaults to 16 bytes.

CON_VAR_BUF_SIZE
Adjusts the size of the variable buffer, in which values of variables can be stored for use with the
HTTP server. It isallocated in xmem space. Defaults to 1024 bytes.

CON_INIT_MESSAGE
Defines the message that is displayed on all Console I/0O methods upon startup. Defaults to “ Con-

sole Ready\r\n”.

CON_TIMEOUT
Adjusts the number of seconds that the Console will wait before cancelling the current command.
The timeout can be adjusted in user code in the following manner:

state->tineout = con_set timeout (CON_TI MEQUT);

Thisis useful for custom user commands so that they can indicate when something “meaningful”
has happened on the Consol e (such as some data being successfully transferred).

Chapter 11: General Purpose Console 217

CON_BACKUP_FILE1

The file number used for the first backup file. This number must be in the range 128-143, so that
fs_reserve_bl ocks() can be used to guarantee free space for the backup files. Defaults to
128.

CON_BACKUP_FILE2

Same as above, except thisis for the second backup file. Two files are used so that configuration
information is preserved even if the power cycleswhile configuration datais being saved. This
number must be in the range 128-143. Defaults to 129.

CON_HELP_VERSION
This macro should be defined if the devel oper wants a version message to be displayed when the

HELP command is issued with no parameters. If this macro is defined, then the macro
CON_VERSI ON_MESSAGE must also be defined.

CON_VERSION_MESSAGE
This defines the version message to display when the HELP command is issued with no parame-

ters. It isnot defined by default, so has no default value.

11.8 Sample Program

/***

t cpi pconsol e. c
Z-World, 2001
Thi s sanpl e programdenonstrates many of the features of ZCONSOLE. LI B.

Among the features this sanple program supports is network
configuration, upl oadi ng web pages, changi ng variables for use with web

pages, sending mail, and access to the console through a telnet client.
**/

#define My_I P_ADDRESS "10.10.6.112"
#define MY_NETMASK "255.255. 255. 0"
#define MY_GATEWAY "10.10.6.1"
#defi ne MY_NAMESERVER "10.10.6.1"
#define SMIP_SERVER "10.10.6.1"

/
Size of the buffers for serial port C. If you want to use
anot her serial port, you should change the buffer macros bel ow
* appropriately (and change the console_io[] array bel ow).

*/

#define CINBUFSI ZE 1023

#defi ne COUTBUFSI ZE 255

L

/*

* Maxi num nunber of connections to the web server. This indicates
* the nunmber of sockets that the web server wll use.

* [

#defi ne HTTP_MAXSERVERS 2

218 TCP/IP User’'s Manual

* % %

Maxi mum nunber of sockets this program can use. The web server
is taking two sockets (see above), the mail client uses one

* socket, and the telnet interface uses 1 socket.

*/

#defi ne MAX_SOCKETS 4

/*
* All web server content is dynamc, so we do not need
* http_flashspec[].
*/

#defi ne HTTP_NO_FLASHSPEC

/*

* The filesystemthat the console uses should be located in flash.
*/

#define FS_FLASH

/*
* Consol e configuration
*/

/*

* The nunber of console I/O streans that this program supports. Since
* we are supporting serial port Cand telnet, there are two |/ O streans.
*/

#defi ne NUM_CONSOLES 2

/*

* If this macro is defined, then the version nmessage will be shown
* with the help command (when the hel p command has no paraneters).
*/

#defi ne CON_HELP_VERSI ON

/*

* Defines the version nessage that will be displayed in the help

* command if CON_HELP_VERSI ON i s defi ned.

*/

#defi ne CON_VERSI ON_MESSAGE "TCP/ I P Consol e Version 1.0\r\n"

/*

* Defines the nmessage that is displayed on all 1/0O channels when the
consol e starts.

*/

#define CON_| NI T_MESSAGE CON_VERSI ON_MESSAGE

Chapter 11: General Purpose Console 219

/*
* These xinport directives include the help texts for the
* consol ecommands. Having the help text in xmem hel ps save
* root code space.
*/
#xi mport "sanpl es\ zconsol e\t cpi pconsol e_hel p\ hel p. txt" hel p_t xt
#xi mport "sanpl es\ zconsol e\t cpi pconsol e_hel p\ hel p_hel p. txt"
hel p_hel p_t xt
#xi mport "sanpl es\ zconsol e\t cpi pconsol e_hel p\ hel p_echo. txt"
hel p_echo_t xt
#xi mport "sanpl es\ zconsol e\t cpi pconsol e_hel p\ hel p_set.txt"
hel p_set _txt
#xi mport "sanpl es\ zconsol e\t cpi pconsol e_hel p\ hel p_set _param txt"
hel p_set paramt xt
#xi mport "sanpl es\ zconsol e\t cpi pconsol e_hel p\ hel p_set _mai |l . txt
hel p_set _mail _txt
#xi mport
"sanpl es\ zconsol e\t cpi pconsol e_hel p\ hel p_set_nmil _server.txt"
hel p_set _mail _server _txt
#xi mport "sanpl es\ zconsol e\t cpi pconsol e_hel p\ hel p_set _mail _fromtxt"
hel p_set _mail _fromt xt
#xi mport "sanpl es\ zconsol e\t cpi pconsol e_hel p\ hel p_show. t xt"
hel p_show_t xt
#xi mport "sanpl es\ zconsol e\t cpi pconsol e_hel p\ hel p_put . txt"
hel p_put _t xt
#xi mport "sanpl es\ zconsol e\t cpi pconsol e_hel p\ hel p_get. txt"
hel p_get _t xt
#xi mport "sanpl es\ zconsol e\t cpi pconsol e_hel p\ hel p_del ete. txt"
hel p_del ete_t xt
#xi mport "sanpl es\ zconsol e\t cpi pconsol e_hel p\hel p_list.txt"
hel p_Iist_txt
#xi mport "sanpl es\ zconsol e\t cpi pconsol e_hel p\ hel p_createv.txt"
hel p_createv_t xt
#xi mport "sanpl es\ zconsol e\t cpi pconsol e_hel p\ hel p_putv.txt"
hel p_put v_t xt
#xi mport "sanpl es\ zconsol e\t cpi pconsol e_hel p\ hel p_getv. txt"
hel p_get v_t xt
#xi mport "sanpl es\ zconsol e\t cpi pconsol e_hel p\ hel p_mail .t xt
hel p_mai | _t xt
#xi mport "sanpl es\ zconsol e\t cpi pconsol e_hel p\ hel p_reset. txt
hel p_reset _txt
#xi mport "sanpl es\ zconsol e\t cpi pconsol e_hel p\hel p_reset _files.txt"
hel p_reset files_txt
#xi mport
"sanpl es\ zconsol e\t cpi pconsol e_hel p\ hel p_reset _vari ables.txt"
hel p_reset _vari abl es_t xt

220 TCP/IP User’'s Manual

#memmp xmem

#use "FileSystem|ib"
#use "dcrtcp.lib"
#use "http.lib"

#use "sntp.lib"

/*

*

*/

Note that all libraries that zconsole.lib needs nust be #use'd
before #use'ing zconsole.lib .

#use "zconsole.lib"

/*
*
*
*

i nt

/

L S B T R I

/

This function prototype is for a custom comrand, so it nust be
decl ared before the consol e_command[] array.

hel |l o_wor | d(Consol eSt at e* state);

This array defines which I/O streans for which the console will
be avail able. The streans included bel ow are defined through
macros. Avail able macros are CONSOLE | O SERA, CONSOLE | O SERB,
CONSOLE_I| O_SERC, CONSOLE_I O SERD, CONSOLE_I O TELNET, and
CONSOLE I O SP (for the slave port). The paraneter for the macro
represents the initial baud rate for serial ports, the port
number for telnet, or the channel number for the slave port.

It is possible for the user to define her own I/O handlers and
include themin a ConsolelO structure in the console_io array.
Remember that if you change the nunber of 1/0O streanms here, you
shoul d al so change the NUM CONSOLES nacro above.

const Consol el O console_io[] =

{

H

CONSOLE_I O_SERC(57600),
CONSOLE_I O _TELNET(23)

Chapter 11: General Purpose Console

221

This array defines the commands that are available in the console.
The first paraneter for the Consol eCommand structure is the
command specification--that is, the neans by which the console
recogni zes a conmand. The second paraneter is the function
to call when the conmmand is recogni zed. The third paranmeter is
the I ocation of the #xinport'ed help file for the command.
Not e that the second paraneter can be NULL, which is useful if
help information is needed for sonething that is not a conmand
(like for the "SET" conmmand bel ow--the help file for "SET"
contains a list of all of the set commnds). Also note the
entry for the conmand "", which is used to set up the help text
that is displayed when the help command is used by itself (that
is, with no paraneters).
/
const Consol eCommand consol e_commands[] =

{

L . T T R R S T

"HELLO WORLD", hello_world, 0},
"ECHO', con_echo, hel p_echo_txt },
"HELP", con_hel p, hel p_hel p_txt },
""", NULL, help_txt },
"SET", NULL, help_set txt },
"SET PARAM', con_set_param hel p_set_paramtxt },
"SET I P", con_set_ip, help_set_txt },
"SET NETMASK", con_set_netnask, hel p_set txt },
"SET GATEWAY", con_set_gateway, help_set txt },
"SET NAMESERVER', con_set naneserver, help_set_txt },
"SET MAIL", NULL, help_set_mail _txt },
"SET MAIL SERVER', con_set _mmil _server,
hel p_set _mail _server_txt },
"SET MAIL FROM', con_set_mmil_from help_set_mail_fromtxt }
"SHOW , con_show, hel p_show txt },
"PUT", con_put, help_put_txt },
"CGET", con_get, help_get_txt },
"DELETE", con_delete, help_delete_txt },
"LI ST", NULL, help_list_txt },
"LI ST FILES", con_list_files, help_list_txt },
"LI ST VARI ABLES", con_list_variables, help_list_txt },
"CREATEV", con_createv, help_createv_txt },
"PUTV', con_putv, help_putv_txt },
"GETV', con_getv, help_getv_txt },
"MAIL", con_mail, help_mail _txt },
"RESET", NULL, help_reset_txt },
"RESET FILES", con_reset _files, help_reset files_txt },
"RESET VARI ABLES", con_reset vari abl es,
hel p_reset _variabl es_txt }

Lt Rt Rate Nate Watn Wate W o W W e W N)

Lt Nt W et W W e W W e W e N e Wt W e W W e

222 TCP/IP User’'s Manual

This array sets up the error nessages that can be generat ed.
CON_STANDARD ERRORS is a nacro that expands to the standard
errors that the built-in commands in zconsole.lib uses. Users
can define their own errors here, as well.

/

const Consol eError console _errors[] = {

CON_STANDARD_ERRORS

~
* 0% % %k X X

L I R I S

~

This array defines the information (such as configuration) that
will be saved to the filesystem Note that if, for exanple, the
HTTP or SMIP rel ated commands are include in the consol e _conmands
array above, then the backup information nmust be included in

this array. The entries below are macros that expand to the
appropriate entry for each set of functionality. Users can also
add their own information to be backed up here by addi ng nore
Consol eBackup structures.

const Consol eBackup consol e_backup[] =

{
CONSOLE_BASI C_BACKUP,
CONSOLE_TCP_BACKUP,
CONSOLE_HTTP_BACKUP,
CONSOLE_SMIP_BACKUP
b
/*
* The foll owi ng defines the M ME types that the web server will handle.
*/
const HttpType http_types[] =
{
{ ".shtm", "text/htm", shtm _handler}, // ssi
{ ".htm ", "text/htm ", NULL}, /1 htm
{ ".gif", "imgel/gif", NULL},
{ ".jpg", "imgel/jpeg", NULL},
{ ".jpeg", "image/jpeg", NULL},
{ ".txt", "text/plain", NULL}
b
/*

Chapter 11: General Purpose Console 223

voi d mai n(voi d)

{

/*

* All initialization of TCP/IP, clients, servers, and |I/0O

* nmust be done by the user prior to using any consol e functions.

*/

sock_init();

tcp_reserveport(80); /1 Enabl e SYN-queuei ng and di sabl e the
/1 2MSL wait for the web server (results
/1 in perfornmance inprovenents).

http_init();

if (fs_init(0, 64)) {
printf("Filesystem not present!\n");

}
if (console_init() !'=0) {
printf("Console did not initialize!\n");
fs_format (0, 64, 1);
/*
* Anytine after the file system has been initialized or
* formatted (after console_init() has been executed),
* con_backup_reserve() nmust be called to reserve space in
* the file systemfor the backup information.
*/
con_backup_reserve();
con_backup(); // Savethebackupinformation to the console.
}
while (1) {
consol e_tick();
htt p_handl er () ;
}

224

TCP/IP User’'s Manual

Index using TCP/P ... 214 gethostidcccoevevcucnnee 24
gethostname 24
Numerics D getpeername 25
Daemons getsocknamecco...... 26
2MSL o 81 o, client tick v 171 pd_getaddress 33
FP_HICK oo 177 PSOCKEL .oovoevs 34
o http_handleroooocc...... 162 resolve e 35
Applicati on Protocols POP3_tCK wrrrreeerrer e 196 setdomal nname 38
FTPClientcccoeevvenenee 169 e (1 T 82 sethostidcoocevvveverereenns 39
FTP Servercccoevvcvvnee. 173 tEINEt ICK oo 200 sethostnamecc.c..... 39
HTTP e 133 it T S 183 Cal _ .
POP3 Clientccccueuunee. 193 cgi_redirectto 158
SMTP Clientcccceeeueeee 187 E cgi_sendstring 159
Telnet oo 199 . Configuration
TETP woeeeeeeeceseeeeeeeeeereenn 179 ~ Emall £CP_CONFIG wevrrrerrreeerrre 75
POP3 Client Console
call-back function 194 console_initc.......... 215
, configuration 193 ti
BUFfEr SIZES ...vvcvvevvveerrnnnnnnnnnns 10 receiving e-mail ... 103 CO?szOI € lICK v 215
sample conversdtion198 http_setcookie 164
sample program 197 Data Conversion
Checksumscccveevvienenienennen. 51 SMTP Client honl e 27
Consolecoovvcvirciiiiiie 203 configuration 188 NEONS oo 27
Backup System ..o 216 debug 188 http contentencode 160
circular buffers 214 define server 188 http_urldecode 165
Commandsccccceveuennn 204 HELO command 188 ingt addr oo 28
action taken 204 sample conversation187 inet Ntoa oo 29
command array 205 sample program 192 ORONT o 31
custom commands 209 sending e-mail 187 NONS oo 32
data structure 204 timeout value................. 188 0210 6 | 32
default commands 205 Ethernet Transmission Unit ...46 FID coveeeeeereeeeseeeeeesssesseeeens 36
default functions 206 E-mail
help overview 204 F pop3_getmail 196
help text for command .204 £rp gjient ... 169 POP3_INIt .oeseeeer 195
name of command204 4o nioad file 169 POP3_tCK .orvvreer 196
configuration macros217 e1p gaemon 171 smip_mailtick 191
Console Execution 213 port nuMbercc........ 169 smtp_sendmail 189
slaveportccccceeeveenene 213 set up file transfer 170 smtp_sendmailxmem ...190
Tel nfat 212 size of downloaded file171 smtp_ﬁatus ___________________ 191
terminal emulator215 yioaqfiles ... 169 FTPClient
DEBMON .. 215 FTP Server e 173 ftp_client filesize171
Error Messages 210 anonymous login 173 ftp_client_setup 170
custom error messages 211 Configuration Constants ..173 ftp_client_tick 171
, default ErTor Messagyes 210 buffer sizeccocueueeeeee. 173 FTP Server
file system initialization ...214 connection timeot 173 L1 O 01 SRR 177
/O Interfacecccoovveeen. 212 simultaneous connections .. ftp_tick oo 177
pustom [/O methods213 173 HTML Forms
including an I/0 method ... string lengths 173 http_finderrbuf 161
milltizple O Sreams . 213 file handlersooovvo...... 174 http_nextfverr 162
&S SIS e sample program 178 http_parseform 163
_p.re(_jefl_ned /0 methods 212 Functign Igefgrence sspec_addfVvcceveeeneee 96
Initi aI ization s 215 Addressing SEC_FINAFV covvvvrvvvreeeen, 102
physical connection..........213 AP_rESOIVE ...ooorr 21 sspec_getformtitle105
required functions 215 getdomainname 23 sspec_getfvdesc 107
sample program 218
TCP/IP User’'s Manua 225

sspec_getfventrytype ... 108 sock_thsizecccceveee 68 sauth_authenticate 91
sspec_getfvlen 108 sock_thused 68 sauth_getusername 92
sspec_getfvname 109 Socket Status sauth_getwriteaccess 92
sspec_getfvnum 109 sock_bytesready 41 sauth_setwriteaccess 93
sspec_getfvopt 110 sock_dataready 42 TFTP Client
sspec_getfvoptlistlen ... 110 SOCKENT oot 43 titp_exec ..oovvvevvveenns 185
sspec_getfvreadonly111 SOCKSLALE ..ocevevvceveerreeen 66 thtp init o 181
sspec_setformepilog 120 tep tick v 82 tp initX oo 182
sspec_setformfunction . 121 TCP/IP Engine titp tick .oovveveveiine 183
sspec_setformprolog 122 SOCK_init v 50 tftp tickX wovvvrereeieeee 184
sspec_setformtitle 123 tep tick v 82 Timers
sspec_setfvcheck 124 TCP/IP servers' list ip_timer_expired 29
sspec_setfvdesc 125 http_delfile.......c.cce... 161 ip_timer_init ..o 31
sspec_setfventrytype ... 125 TCP/IP servers object list UDP Socket I/0
sspec_setfvfloatrange .. 126 http_addfile.................. 159 SOCK_F€CV .cvveeeeiiicnne 62
sspec_setfvlen 126 shtml_addfunction 166 sock _recv_from 64
sspec_setfvname 127 shtml_addvariable 167 sock _recv_init 65
sspec_setfvoptlist 127 shtml_delfunction 168 udp_openccceeereeeenens 83
sspec_setfvrange 128 shtml_delvariable 168
sspec_setfvreadonly 128 sspec_addform 9 H
HTTP server sspec_addfsfile 95 HTML FOMS woovreereeeeen 145
http_ha_lndler 162 sspec_addfunct_l on ... 96 buffer allocation 152
_ http_init ... 163 sspec_addroo_tflle 97 FORM 8 «.vvvrreeeererrrn 145
Ping sspec_addvariable........... 98 ACTION option 145
_chk CPING o 22 sspec_addxmemfile 99 METHOD option ... 145
PING 34 sspec_addxmemvar 100 INPUT tag crrreooerererenn 145
_send B siLy/c SRS 37 sspec_aliasspec 101 NAME parameter ... 145
Socket Configuration sspec_c_heckacceﬁ 102 SIZE parameter 145
sock_modeccccueuees 51 sspec_f! ndname_ 103 TYPE parameter 145
tcp_clearreserve 74 sspec fi nd_nextflle 104 VALUE parameter 145
tcp_reserveport 81 sspec_getfileloc 104 OPLON 1St eovverrreeeerrn 156
Socket Connection sspec_getﬂlety_pe 105 POST-style submission ... 148
sock_abortcoceeeenene 40 sspec_getfunction 106 pulldown menu «............. 153
sock_close_ 42 sspec_getfvspec 111 SAMPIE PAGE <.vrrrrrreere 146
sock_established 44 sspec_getlength 112 Zserver lib functionality .. 152
Socket 1/0 SSpec_getname............. 12 TP Servers . 133
sock_fastregd 45 sspec_getrealm 113 authentication ... 134
sock_fastwrite 46 SSpec_gettype................ 113 cGl 145
sock_flushcccceeeenene 47 Sspec_getusername 114 sample handler 150
sock_flushnex 48 sspec _getvarapldr 114 configurable constants 137
SOCK_QEtC ..oveeeeeeeieen 49 sspec_getvarkind 115 Data Structures ... 133
SOCK_QEtS ..oveeeeeeeen 50 sspec_getvartype o 115 HttpREaAIM ...ovvvrrrreoe.. 134
sock_preread 52 sspec_needsauthentication . HEPSDEC vvvevererrrreee 133
SOCK_PULC .o 53 116 _ HUPSELE ovvoerrerrrreeee 135
SOCK_PULS e 54 sspec_readflle_ 117 HEPTYPE crroeerrererreee 134
sock_reqd 56 sspec_readvariable 118 dynamic web pages 141
sockTwrlte 73 SSpec_remove 118 file extensions ... 134, 140
tep_listen .o 77 SSpEC_restore 119 HTML EOIMS. oo 145
tCP_0pencceceveeieeene 79 SSPEC_SAVE ...ooveeeenee 119 MIME type wroeoreoveverrrne 134
Socket 1/O Buffer sspec_setreadm 129 number of servers ... 137
sock_rbl_eft 54 sspec_setsavedata 130 POST command 148
sock rbsize ..., 55 sspec_setuse_r 131 protection Spaces 134
sock rbused 55 TCP/IP users list ss . 144
sock _thleftcceeenis 67 sauth_adduser 90 Static web pages 138
226 TCP/IP User’'s Manual

URL-encoded Data 148

Reading & Storing 149
I
IP Addresses
(€858 ..ot 4,5
Set Dynamically 3
Set Manuallycccoeeeennene 3
M
Maximum Segment Size 10
MEMMAD .eoveerieeiee e 15
MIME typescccvovverrrrerenen. 140
N
Nagle agorithmccccc....... 51
P
Packet Processing 16
POP3 Client
Configuration 193
debug option 193
receiving e-mail 193
R
Reset clocKoocvveerinrcnene. 138
S
Server Utility Library 87
configurable constants 88
Data Structures 87
BCCESS ..oovieeeeeireeee e 88
TCP/IP servers object list .
87
TCP/IPuserslist 87
number of objects............... 89
number of usersc.c..... 89
ObjECt tYPES ..o 88
variabletypes ... 88
SMTP Client
Configuration 188
debug option 188
define mail server 188
HELO command 188
timeout value 188
sending e-mail 187
Socket
data structureccccceun.e. 10
default modecccoenenee. 13
definitioncccoeevevinennne 10

empty line vs empty buffer 41

T
TCP SOCKELoocvvvevvericeeree, 10
Active Openccceeevennene 11
Blocking Macros 17
Control Functions 11
Delay a Connection 11
I/O Functionscceeeevens 13
Blockingccccoeerieniennene 17
Non-Blocking 16
Passive Opencccveeuene 10
TCPIIP e 3
Configurationccccceeeee. 3
BOOTP/DHCP.................. 3
/O Buffersooveeeeeeneen. 10
IPAddressesccceeeuvenee 3
MAC addressc....... 3
Skeleton Program 15
Initializationccoeeevens 15
Multitaskingccccceeerennne 18
TFTPClientcccoeevvveveennns 179
Data Structure 180
DHCP/BOOTP........c.c...... 179
stack spacecocceeeeiienene 180
Tick ratesoceeveevveecveeereeenne, 16
U
UDP
Broadcast Packets 14
Performancecccccveue.e. 15
UDP Socket
Checksumcoeeevveeveinnnns 15
Functionscccceevveeenene 13
Openand Closeccc.v.e.. 14
Readccooovvieeeieee, 14
record Servicecoeeveneeee. 65
WILE v, 14
URL-encoded Data 148, 149
W
Well-known Ports
FTPserveroceceveenneen. 173
HTTP server ... 137
POP3 ... 193
SMTP server ... 187

TCP/IP User's Manual

227

	Introduction �1
	TCP/IP Engine �2
	2.1� TCP/IP Configuration
	2.1.1� IP Addresses Set Manually
	2.1.2� IP Addresses Set Dynamically
	2.1.2.1 BOOTP/DHCP Control Macros
	2.1.2.2 BOOTP/DHCP Global Variables
	2.1.2.3 BOOTP/DHCP Functions
	2.1.2.4 DHCP Sample Program

	2.1.3 Sizes for TCP/IP I/O Buffers

	2.2� TCP Socket Interface
	2.2.1� Number of Sockets
	2.2.2� Passive Open
	2.2.3 Active Open
	2.2.4 Delay a Connection
	2.2.5 TCP Socket Functions
	2.2.5.1 Control Functions
	2.2.5.2 Status Functions
	2.2.5.3 I/O Functions

	2.3� UDP I/O Interface
	2.3.1� Opening and Closing a UDP Socket
	2.3.2� Writing to a UDP Socket
	2.3.3� Reading From a UDP Socket
	2.3.4� Checksums

	2.4� Skeleton Program
	2.4.1� TCP/IP Stack Initialization
	2.4.2� Packet Processing
	2.4.3� TCP/IP Daemon Computing Time

	2.5� State-Based Program Design
	2.5.1� Blocking vs. Non-Blocking
	2.5.1.1 Non-Blocking Functions
	2.5.1.2 Blocking Functions
	2.5.1.3 Blocking Macros

	2.6� Multitasking and TCP/IP
	2.6.1� µC/OS-II
	2.6.2� Cooperative Multitasking

	2.7� Function Reference
	2.8� Macros

	Server Utility Library �3
	3.1� Data Structures for Zserver.lib
	3.1.1� ServerSpec Structure
	3.1.2� ServerAuth Structure
	3.1.3� FormVar Structure

	3.2� Constants Used in Zserver.lib
	3.2.1� ServerSpec Type Field
	3.2.2� ServerSpec Vartype Field
	3.2.3� Servermask field
	3.2.4� Configurable Constants

	3.3� HTML Forms
	3.4� Functions

	HTTP Server �4
	4.1� HTTP Server Data Structures
	4.1.1� HttpSpec
	4.1.1.1� HttpSpec fields

	4.1.2� HttpType
	4.1.3� HttpRealm
	4.1.4� HttpState
	4.1.4.1� HttpState Fields

	4.2� Configuration Constants
	4.3� Sample Programs
	4.3.1� Serving Static Web Pages
	4.3.1.1� Adding Files to Display
	4.3.1.2� Adding Files with Different Extensions
	4.3.1.3� Handling of Files With No Extension

	4.3.2� Dynamic Web Pages Without HTML Forms
	4.3.2.1� SSI Feature
	4.3.2.2� CGI Feature

	4.3.3� Web Pages With HTML Forms
	4.3.3.1� Sample HTML Page
	4.3.3.2� POST-style form submission
	4.3.3.3� URL-encoded Data
	4.3.3.4� Sample of a CGI Handler

	4.3.4� HTML Forms Using Zserver.lib

	4.4� Functions

	FTP CLIENT �5
	5.1� Configuration Macros
	5.2� Functions
	5.3� Sample FTP Transfer

	FTP Server �6
	6.1� Configuration Constants
	6.1.1� File Options

	6.2� File Handlers
	6.3� Functions
	6.4� Sample FTP Server

	TFTP Client �7
	7.0.1� BOOTP/DHCP
	7.0.2� Data Structure for TFTP
	7.0.3� Function Reference
	7.0.3.1 TFTP Session

	SMTP Mail Client �8
	8.1� Sample Conversation
	8.2� Configuration
	8.3� Functions
	8.4� Sample Sending of an E-mail

	POP3 Client �9
	9.1� Configuration
	9.2� Three Steps to Receive E-mail.
	9.3� Call-Back Function
	9.3.1� Normal call-back
	9.3.2� POP_PARSE_EXTRA call-back

	9.4� Functions
	9.5� Sample receiving of e-mail
	9.5.1� Sample Conversation

	Telnet �10
	10.1� Configuration Macros
	10.2� Functions
	10.3� An Example Telnet Server
	10.3.1� A Sample Client To Connect to the Server

	General Purpose Console �11
	11.1� Introduction
	11.2� Console Features
	11.2.1� Using other Dynamic C Libraries

	11.3� Console Commands and Messages
	11.3.1� Console Command Data Structure
	11.3.1.1 Help Text for General Cases

	11.3.2� Console Command Array
	11.3.3� Console Commands
	11.3.3.1 Default Command Functions
	11.3.3.2 Custom Console Commands

	11.3.4� Console Error Messages
	11.3.4.1 Default Error Messages
	11.3.4.2 Custom Error Messages

	11.4� Console I/O Interface
	11.4.1� How to Include an I/O Method
	11.4.2� Predefined I/O Methods
	11.4.2.1 Serial Ports
	11.4.2.2 Telnet
	11.4.2.3 Slave Port
	11.4.2.4 Custom I/O Methods

	11.4.3� Multiple I/O Streams

	11.5� Console Execution
	11.5.1� File System Initialization
	11.5.2� Serial Buffers
	11.5.3� Using TCP/IP
	11.5.4� Required Console Functions
	11.5.5� Console Execution Choices
	11.5.5.1 Terminal Emulator

	11.6� Backup System
	11.6.1� Data Structure for Backup System
	11.6.2� Array Definition for Backup System

	11.7� Console Macros
	11.8� Sample Program

	Index

