
Dynamic C

TCP/IP User’s Manual
000423-A

Dynamic C TCP/IP User’s Manual
Part Number 019-0100 • 000423-A
Printed in U.S.A.

Copyright

© 2001 Z-World, Inc. • All rights reserved.

The TCP/IP software used in the Rabbit 2000 TCP/IP Development Kit is designed for
use only with Rabbit Semiconductor chips, and is used under licence from Erick Engelke.

Z-World, Inc. reserves the right to make changes and improvements to its products with-
out providing notice.

Trademarks

• Dynamic C® is a registered trademark of Z-World, Inc.

• Windows® is a registered trademark of Microsoft Corporation

Notice to Users
When a system failure may cause serious consequences, protecting life and property

against such consequences with a backup system or safety device is essential. The buyer
agrees that protection against consequences resulting from system failure is the buyer’s

responsibility.

This device is not approved for life-support or medical systems.

All Z-World products are 100 percent functionally tested. Additional testing may include

visual quality control inspections or mechanical defects analyzer inspections. Specifica-
tions are based on characterization of tested sample units rather than testing over tempera-
ture and voltage of each unit. Rabbit Semiconductor may qualify components to operate

within a range of parameters that is different from the manufacturer’s recommended

range. This strategy is believed to be more economical and effective. Additional testing or
burn-in of an individual unit is available by special arrangement.

Company Address
Z-World, Inc
2900 Spafford Street
Davis, California 95616-6800
USA

Telephone: (530) 757-3737
Facsimile: (530) 753-5141
Web site: http://www.zworld.com
ii

.9(P)]TJ
/T9 1 Tf
3.012 0 TD3614Tc
()Tj
/F5 1 Tf12(......)4.....)]TJ1807....3
Table of Contents

1 Introduction ...1

2 TCP/IP Engine..3

2.1 TCP/IP Configuration...............................3
IP Addresses Set Manually...................3
IP Addresses Set Dynamically3

BOOTP/DHCP ControM/F5 1 Tf
0.253 Tf
0.72 0 TD
()4(fTf
0.(essf
4.2rosF5 1 Tf
0.253I)-12
BOOTP/DHCP Cont8554.9(P)]TJ
/T9 1 Tf
3.012 0 TD3614Tc
()Tj
152 0 0(.41 Tf)]TJ6867.... 3

BO O T P/DHC P
Dynamic C User’s Manual iii

tcp_open............................... 79
tcp_reserveport 81
tcp_tick 82
udp_open 83

2.8 Macros ... 85
DISABLE_DNS 85
MAX_SOCKETS 85
MY_DOMAIN 85
MY_GATEWAY................. 85
MY_IP_ADDRESS 85
MY_NAMESERVER.......... 85
MY_NETMASK 85
SOCK_BUF_SIZE 86
tcp_MaxBufSize 86

3 Server Utility Library............................. 87

3.1 Data Structures for Zserver.lib 87
ServerSpec Structure.......................... 87
ServerAuth Structure.......................... 87
FormVar Structure.............................. 87

3.2 Constants Used in Zserver.lib 88
ServerSpec Type Field 88
ServerSpec Vartype Field................... 88
Servermask field 88
Configurable Constants...................... 88

3.3 HTML Forms... 89

3.4 Functions.. 90
sauth_adduser 90
sauth_authenticate 91
sauth_getusername............... 92
sauth_getwriteaccess 92
sauth_setwriteaccess 93
sspec_addform 94
sspec_addfsfile..................... 95
sspec_addfunction 96
sspec_addfv 96
sspec_addrootfile 97
sspec_addvariable 98
sspec_addxmemfile 99
sspec_addxmemvar............ 100
sspec_aliasspec 101
sspec_checkaccess 102
sspec_findfv....................... 102
sspec_findname 103
sspec_findnextfile 104
sspec_getfileloc 104
sspec_getfiletype 105
sspec_getformtitle.............. 105
sspec_getfunction 106
sspec_getfvdesc 107
sspec_getfventrytype 108
sspec_getfvlen 108
sspec_getfvname................ 109
sspec_getfvnum 109

sspec_getfvopt 110
sspec_getfvoptlistlen 110
sspec_getfvreadonly111
sspec_getfvspec111
sspec_getlength.................. 112
sspec_getname 112
sspec_getrealm................... 113
sspec_gettype..................... 113
iv Dynamic C User’s Manual

CGI Feature145
Web Pages With HTML Forms145

Sample HTML Page146
POST-style form submission148
URL-encoded Data148
Sample of a CGI Handler150

HTML Forms Using Zserver.lib152

4.4 Functions ..158
cgi_redirectto......................158
cgi_sendstring.....................159
http_addfile.........................159
http_contentencode.............160
http_delfile161
http_finderrbuf161
http_nextfverr162
http_handler........................162
http_init163
http_parseform163
http_setcookie.....................164
http_urldecode....................165
shtml_addfunction..............166
shtml_addvariable167
shtml_delfunction...............168
shtml_delvariable168

5 FTP CLIENT...169

5.1 Configuration Macros...........................169

5.2 Functions ..170
ftp_client_setup170
ftp_client_tick.....................171
ftp_client_filesize171

5.3 Sample FTP Transfer............................172

6 FTP Server ...173

6.1 Configuration Constants.......................173
File Options173

6.2 File Handlers ..174
open174
getfilesize175
read175
write....................................176
close....................................176

6.3 Functions ..177

6.4 Sample FTP Server...............................178

7 TFTP Client ...179
BOOTP/DHCP179
Data Structure for TFTP180
Function Reference...........................180

TFTP Session180
tftp_init181
tftp_initx182
tftp_tick183
tftp_tickx184

tftp_exec185

8 SMTP Mail Client187

8.1 Sample Conversation............................187

8.2 Configuration..188

8.3 Functions ..189

8.4 Sample Sending of an E-mail192

9 POP3 Client...193

9.1 Configuration..193

9.2 Three Steps to Receive E-mail.193

9.3 Call-Back Function...............................194
Normal call-back194
POP_PARSE_EXTRA call-back......194

9.4 Functions ..195
pop3_init195
pop3_getmail......................196
pop3_tick............................196

9.5 Sample receiving of e-mail...................197
Sample Conversation........................198

10 Telnet ...199

10.1 Configuration Macros.........................199

10.2 Functions ..199

10.3 An Example Telnet Server..................201
A Sample Client To Connect to the

Server...202

11 General Purpose Console203

11.1 Introduction ..203

11.2 Console Features.................................203
Using other Dynamic C Libraries.....203

11.3 Console Commands and Messages.....204
Console Command Data Structure ...204

Help Text for General Cases204
Console Command Array205
Console Commands..........................205

Default Command Functions206
Custom Console Commands209

Console Error Messages210
Default Error Messages210
Custom Error Messages211

11.4 Console I/O Interface..........................212
How to Include an I/O Method.........212
Predefined I/O Methods....................212

Serial Ports212
Telnet212
Slave Port213
Custom I/O Methods213

 Multiple I/O Streams213

11.5 Console Execution..............................213
File System Initialization..................214
Serial Buffers214
Dynamic C User’s Manual v

Using TCP/IP 214
Required Console Functions 215

console_init........................ 215
console_tick 215

Console Execution Choices 215
Terminal Emulator 215

11.6 Backup System................................... 216
Data Structure for Backup System... 216
Array Definition for Backup System217

11.7 Console Macros.................................. 217

11.8 Sample Program................................. 218

Index.. 225
vi Dynamic C User’s Manual

Introduction 1

This manual is intended for embedded system designers and support professionals who are using

an Ethernet-enabled controller board. Knowledge of networks and TCP/IP (Transmission Control
Protocol/Internet Protocol) is assumed. For an overview of these two topics a separate manual is

provided, An Introduction to TCP/IP. A basic understanding of HTML (HyperText Markup Lan-
guage) is also assumed. For information on this subject, there are numerous sources on the Web

and in any major book store.

The Dynamic C implementation of TCP/IP comprises several libraries. The main library is

DCRTCP.LIB. It implements IP, TCP, and UDP (User Datagram Protocol). This, along with the

libraries ARP.LIB and ICMP.LIB, make up the transport and network layers of the TCP/IP pro-
tocol stack. The remaining libraries implement application-layer protocols.

All user-callable functions are listed and described in their appropriate chapter. Example programs

throughout the manual illustrate the use of all the different protocols. The sample code also pro-
vides templates for creating servers and clients of various types.

To address embedded system design needs, additional functionality has been included in Dynamic

C’s implementation of TCP/IP. There are step-by-step instructions on how to create HTML forms,
allowing remote access and manipulation of information. There is also a serial-based console that
can be used with TCP/IP to open up legacy systems for additional control and monitoring.
Introduction 1

2 TCP/IP User’s Manual

TCP/IP Engine 2

This chapter describes the main library file, DCRTCP.LIB, which comprises the configuration

macros, the data structures and the functions used to initialize and drive TCP/IP. IP version 4 is

supported by DCRTCP.LIB.

2.1 TCP/IP Configuration
To run the TCP/IP engine, a host (i.e., the controller board) needs to know its IP address, netmask

and default gateway. If DNS (Domain Name System) lookups are needed, a host will also need to

know the IP address of the local DNS server.

Media Access Control (MAC) address
Some ISPs require that the user provide them with a MAC address for their device. Run the utility

program, Samples/tcpip/display_mac.c, to display the MAC address of your controller
board.

2.1.1 IP Addresses Set Manually
The necessary IP addresses can be set at compile time by defining the configuration macros:
MY_IP_ADDRESS, MY_NETMASK, MY_GATEWAY and MY_NAMESERVER respectively. At
runtime, the configuration functions, tcp_config, sethostid and sethostname can over-
ride the configuration macros.

2.1.2 IP Addresses Set Dynamically
The library BOOTP.LIB allows a target board to be a BOOTP or DHCP client. The protocol used

depends on what type of server is installed on the local network. BOOTP and DHCP servers are

usually centrally located on a local network and operated by the network administrator.

Both protocols allow a number of configuration parameters to be sent to the client, including:

• Client’s IP address
• Net mask
• List of gateways
• Host and default domain name
• List of name servers
Both protocols also provide some inessential but useful information:

• Various standard servers, such as NTP, NIS, cookie, etc.
• A bootstrap server address
• The name of a bootstrap file
To use these protocols, include:

#define USE_DHCP
#use DCRTCP.LIB

in your program.
Chapter 2: TCP/IP Engine 3

BOOTP assigns permanent IP addresses. DHCP can “lease” an IP address to a host, i.e., assign the

IP address for a limited amount of time. The lease can also be specified as permanent by setting

_dhcplife to ~0UL (i.e. 0xFFFFFFFF).

 2.1.2.1 BOOTP/DHCP Control Macros
Various macros control the use of DHCP. They must be set before the line

#use "dcrtcp.lib"in the application program.

USE_DHCP

If this macro is defined, the target uses BOOTP or DHCP to configure the required parameters. If
USE_DHCP is not defined, then MY_IP_ADDRESS, MY_NETMASK, MY_GATEWAY and (possi-
bly) MY_NAMESERVER must be defined in the application program.

DHCP_USE_BOOTP

If defined, the target uses the first BOOTP response it gets. If not defined, the target waits for the

first DHCP offer and only if none comes in the time specified by _bootptimeout does it
accept a BOOTP response (if any). Use of this macro speeds up the boot process, but at the

expense of ignoring DHCP offers if there is an eager BOOTP server on the local subnet.

DHCP_CLASS_ID “Rabbit2000-TCPIP:Z-World:Test:1.0.0”
This macro defines a class identifier by which the OEM can identify the type of configuration

parameters expected. DHCP servers can use this information to direct the target to the appropriate

configuration file. Z-World recommends the standard format: “hardware:vendor:product
code:firmware” version.

DHCP_USE_TFTP
If this and USE_DHCP are defined, the library will use the BOOTP filename and server to obtain

an arbitrary configuration file that will be accessible in a buffer at physical address

_bootpdata, with length, _bootpsize. The global variables, _bootpdone and

_bootperror indicate the status of the boot file download. DHCP_USE_TFTP should be

defined to the maximum file size that may be downloaded.

 2.1.2.2 BOOTP/DHCP Global Variables
The following list of global variables may be accessed by application code to obtain information

about DHCP or BOOTP. These variable are only accessible if USE_DHCP is defined.

_bootpon

Runtime control of whether to perform DHCP/BOOTP. This is initially set to 'true'. It can be set to

false before calling sock_init (the function that initializes the TCP/IP engine), causing static

configuration to be used. Static configuration uses the values defined for the configuration macros,
MY_IP_ADDRESS etc. If BOOTP fails during initialization, this will be reset to 0. If reset, then

you can call dhcp_acquire() at some later time.
4 TCP/IP User’s Manual

_survivebootp
Set to one of the following values:

0

Chapter 2: TCP/IP Engine 5

_bootpsize
Indicates how many bytes of the boot file have been downloaded. Only exists if
DHCP_USE_TFTP is defined.

_bootpdata
Physical starting address of boot data. The length of this area will be DHCP_USE_TFTP bytes,
however, the actual amount of data in the buffer is given by _bootpsize. This variable only

exists if DHCP_USE_TFTP is defined and is only valid if _bootpdone is 1. You can access the

data using xmem2root() and related functions.

_bootperror
Indicates any error which occurred in a TFTP process. This variable only exists if
DHCP_USE_TFTP is defined and is only valid when _bootpdone is 1, in which case

_bootperror is set to one of the following values (which are also documented with the

tftp_tick() function):

 0: No error.
-1: Error from boot file server, transfer terminated. This usually occurs because the server is

not configured properly, and has denied access to the nominated file.
-2: Error, could not contact boot file server or lost contact.
-3: Timed out, transfer terminated.
-4: (not used)
-5: Transfer complete, but truncated because buffer too small to receive the complete file.
6 TCP/IP User’s Manual

 2.1.2.3 BOOTP/DHCP Functions

int dhcp_acquire(void);

DESCRIPTION

This function acquires a DHCP lease which has not yet been obtained, or has expired, or
was relinquished using dhcp_release(). Normally, DHCP leases are renewed auto-
matically, however if the DHCP server is down for an extended period then it might not
be possible to renew the lease in time, in which case the lease expires and TCP/IP should

not be used. When the lease expires, tcp_tick() will return 0, and the global variable

for the IP address will be reset to 0. At some later time, this function can be called to try

to obtain an IP address.

This function blocks until the lease is renewed, or the process times out.

RETURN VALUE

0: OK, lease was not expired, or an IP address lease was acquired with the same IP ad-
dress as previously obtained.

-1: An error occurred, no IP address is available. TCP/IP functionality is thus not avail-
able. Usual causes of an error are timeouts because a DHCP or BOOTP server is not
available within the timeout specified by the global variable _bootptimeout (default
30 seconds).

1: Lease was re-acquired, however the IP address differs from the one previously ob-
tained. All existing sockets must be re-opened. Normally, DHCP servers are careful to re-
assign the same IP address previously used by the client, however this is sometimes not
possible.

LIBRARY

BOOTP.LIB

dhcp_acquire
Chapter 2: TCP/IP Engine 7

int dhcp_release(void);

DESCRIPTION

This function relinquishes a lease obtained from a DHCP server. This allows the server
to re-use the IP address which was allocated to this target. After calling this function, the

global variable for the IP address is set to 0, and it is not possible to call any other TCP/IP

function which requires a valid IP address. Normally, dhcp_release() would be

used on networks where only a small number of IP addresses are available, but there are

a large number of hosts which need sporadic network access.

This function is non-blocking since it only sends one packet to the DHCP server and ex-
pects no response.

RETURN VALUE

0: OK, lease was relinquished.

1: Not released, because an address is currently being acquired, or because a boot file

(from the BOOTP or DHCP server) is being downloaded, or because some other network

resource is in use e.g. open TCP socket. Call dhcp_release() again after the re-
source is freed.

-1: Not released, because DHCP was not used to obtain a lease, or no lease was acquired.

 LIBRARY

BOOTP.LIB

 2.1.2.4 DHCP Sample Program
The following sample is a very basic TCP/IP program, that will initialize the TCP/IP interface, and

allow the device to be 'pinged' from another computer on the network. DHCP or BOOTP will be

used to obtain IP addresses and other
8 TCP/IP User’s Manual

// Main define to cause BOOTP or DHCP to be used.
#define USE_DHCP

/* These values may be used as a fallback if _survivebootp is set true.
Otherwise, they will be ignored. Note that in a 'real' application,
setting fallbacks as hard-coded addresses would be unwise.*/

#define MY_IP_ADDRESS "10.10.6.179"
#define MY_NETMASK "255.255.255.0"
#define MY_GATEWAY "10.10.6.1"

#memmap xmem
#use dcrtcp.lib

/* Print some of the DHCP or BOOTP parameters received. */
void print_results(void){

printf("Network Parameters:\r\n");
printf(" My IP Address = %08lX\r\n", my_ip_addr);
printf(" Netmask = %08lX\r\n", sin_mask);
if (_dhcphost != ~0UL) {

if (_dhcpstate == DHCP_ST_PERMANENT) {
printf(" Permanent lease\r\n");

} else {
printf("Remaining lease= %ld (sec)\r\n", _dhcplife -

SEC_TIMER);
printf("Renew lease in %ld (sec)\r\n", _dhcpt1 - SEC_TIMER);

}
printf(" DHCP server = %08lX\r\n", _dhcphost);
printf(" Boot server = %08lX\r\n", _bootphost);

}
if (gethostname(NULL,0))

printf(" Host name = %s\r\n", gethostname(NULL,0));
if (getdomainname(NULL,0))

printf(" Domain name = %s\r\n", getdomainname(NULL,0));
}
main(){

_survivebootp = 1; // So we can print our own message
_bootptimeout = 6; // Short timeout for testing
sock_init();
if (_dhcphost != ~0UL)

printf("Lease obtained\r\n");
else {

printf("Lease not obtained. DHCP server may be down.\r\n");
printf("Using fallback parameters...\r\n");

}
print_results();
for (;;)

tcp_tick(NULL);
}
Chapter 2: TCP/IP Engine 9

2.1.3 Sizes for TCP/IP I/O Buffers
There are two macros that can define the size of the buffer that is used for UDP
10 TCP/IP User’s Manual

To handle multiple simultaneous connections, each new connection will require its own

tcp_Socket and a separate call to tcp_listen(), but using the same local port number
(lport value). tcp_listen() will immediately return, and you must poll for the incoming

connection. You can use the sock_wait_established macro, which calls tcp_tick()

and blocks until the connection is established or manually poll the socket using

sock_established().

2.2.3 Active Open
When your Web browser retrieves a page, it actively opens one or more connections to the server’s

passively opened sockets. To actively open a connection, you call tcp_open(), which uses

parameters that are similar to the ones used in tcp_listen(). Supply exact parameters for ina

and port, which are the IP address and port number you want to connect to; the lport parame-
ter can be zero, which tells DCRTCP.LIB to select an unused local port between 1024 and 65535.

If tcp_open() returns zero, no connection was made. This could be due to routing difficulties,
such as an inability to resolve the remote computer’s hardware address with ARP.

2.2.4 Delay a Connection
To accept a connection request when the resources to actually process the request are not avail-
able, use the function tcp_reserveport(). It takes one parameter, the port number where

you want to accept connections. When a connection to that port number is requested, the 3-way

handshaking is done even if there is not yet a socket available. When replying to the connection

request, the window parameter in the TCP header is set to zero, meaning, “I can take no bytes of
data at this time.” The other side of the connection will wait until the value in the window parame-
ter indicates that data can be sent. Using the companion function, tcp_clearreserve(port
number), causes TCP/IP to treat a connection request to the port in the conventional way. The

macro USE_RESERVEDPORTS is defined by default. It allows the use of these two functions.

When using tcp_reserveport, the 2MSL (Maximum Segment Lifetime) waiting period for
closing a socket is avoided.

2.2.5 TCP Socket Functions
There are many functions that can be applied to an open TCP socket. They fall into three main cat-
egories: Control, Status, and I/O.

 2.2.5.1 Control Functions
These functions change the status of the socket or its I/O buffer.

tcp_open() and tcp_listen() have been explained in previous sections.

Call sock_close() to end a connection. This call may not immediately close the connection

because it may take some time to send the request to end the connection and receive the acknowl-
edgements. If you want to be sure that the connection is completely closed before continuing, call
tcp_tick() with the socket structure’s address. When tcp_tick() returns zero, then the

• sock_abort • sock_flushnext

• sock_close • tcp_listen

• sock_flush • tcp_open
Chapter 2: TCP/IP Engine 11

socket is completely closed. Please note that if there is data left to be read on the socket, the socket
will not completely close.

Call sock_abort() to cancel an open connection. This function will cause a TCP reset to be

sent to the other end, and all future packets received on this connection will be ignored.

For performance reasons, data may not be immediately sent from a socket to its destination. If
your application requires the data to be sent immediately, you can call sock_flush(). This

function will cause DCRTCP.LIB to try sending any pending data immediately. If you know

ahead of time that data needs to be sent immediately, call sock_flushnext() on the socket.
This function will cause the next set of data written to the socket to be sent immediately, and is

more efficient than sock_flush().

 2.2.5.2 Status Functions
These functions return useful information about the status of either a socket or its I/O buffers.

tcp_tick() is the daemon that drives the TCP/IP engine, but it also returns status information.
When you supply tcp_tick() with a pointer to a tcp_Socket (a structure that identifies a

particular socket), it will first process packets and then check the indicated socket for an estab-
lished connection. tcp_tick() returns zero when the socket is completely closed. You can use

this return value after calling sock_close() to determine if the socket is completely closed.

These status functions can be used to avoid blocking when using sock_write() and some of
the other I/O functions, as illustrated in the following code.

This block of code checks to make sure that there is enough room in the buffer before adding data

with a blocking function. .

• sock_bytesready • sock_rbused

• sock_dataready • sock_tbleft

• sock_established • sock_tbsize

• sock_rbleft • sock_tbused

• sock_rbsize • tcp_tick

sock_close(&my_socket);
while(tcp_tick(&my_socket)) {
// you can do other things here while waiting for the socket
// to be completely closed.

}

if(sock_tbleft(&my_socket,size)) {
sock_write(&my_socket,buffer,size);

}

12 TCP/IP User’s Manual

This block of code ensures that there is a string terminated with a new line in the buffer, or that the

buffer is full before calling sock_gets():

 2.2.5.3 I/O Functions

There are two modes of reading and writing to TCP sockets: ASCII and binary. By default, a socket
is opened in binary mode, but you can change that with a call to sock_mode().

When a socket is in ASCII mode, DCRTCP.LIB assumes that the data is an ASCII stream with

record boundaries on the newline characters for some of the functions. This behavior means

sock_bytesready() will return >=0 only when a complete newline-terminated string is in the

buffer or the buffer is full. The sock_puts() function will automatically place a newline char-
acter at the end of a string, and the sock_gets() function will strip the newline character.

When in binary mode, do not use the sock_scanf (currently not implemented) or the

sock_gets() functions.

2.3 UDP I/O Interface
The UDP protocol is useful when sending messages where either a lost message does not cause a

system failure or is handled by the application. Since UDP is a simple protocol and you have con-
trol over the retransmissions, you can decide if you can trade low latency for high reliability.

Notice that there are three additional I/O functions that are only available for use with UDP sock-
ets: sock_recv(), sock_recv_from() and sock_recv_init(). The status and con-

sock_mode(&my_socket,TCP_MODE_ASCII);
if(sock_bytesready(&my_socket) != -1) {

sock_gets(buffer,MAX_BUFFER);
}

• sock_fastread • sock_putc

• sock_fastwrite • sock_puts

• sock_getc • sock_read

• sock_gets • sock_write

• sock_preread

• sock_fastread • sock_read

• sock_fastwrite • sock_recv

• sock_getc • sock_recv_from

• sock_gets • sock_recv_init

• sock_preread • sock_write

• sock_putc • udp_open

• sock_puts
Chapter 2: TCP/IP Engine 13

trol functions that are available for TCP sockets also work for UDP sockets, with the exception of
the open functions, tcp_listen() and tcp_open().

Broadcast Packets
UDP can send broadcast packets (i.e., to send a packet to a number of computers on the same net-
work). When done properly, broadcasts can reduce overall network traffic because information

does not have to be duplicated when there are multiple destinations.

2.3.1 Opening and Closing a UDP Socket
The udp_open function takes a remote IP address and a remote port number. If they are set to a

specific value, all incoming and outgoing packets are filtered on that value (i.e., you talk only to

the one remote address).

If the remote IP address is set to -1, the UDP socket receives packets from any valid remote

address, and outgoing packets are broadcast. If the remote IP address is set to 0, no outgoing pack-
ets may be sent until a packet has been received. This first packet completes the socket, filling in

the remote IP address and port number with the return address of the incoming packet. Multiple

sockets can be opened on the same local port, with the remote address set to 0, to accept multiple

incoming connections from separate remote hosts. When you are done communicating on a socket
that was started with a 0 IP address, you can close it with sock_close() and reopen to make it
ready for another source.

2.3.2 Writing to a UDP Socket
The normal socket functions you used for writing to a TCP socket will work for a UDP socket, but
since UDP is a significantly different service, the result could be different. Each atomic write—
sock_putc(), sock_puts(), sock_write(), or sock_fastwrite()—places its data

into a single UDP packet. Since UDP does not guarantee delivery or ordering of packets, the data

received may be different either in order or content than the data sent. Packets may also be dupli-
cated if they cross any gateways. A duplicate packet may be received well after the original.

2.3.3 Reading From a UDP Socket
There are two ways to read packets using DCRTCP.LIB. The first method uses the same read

functions that are used for TCP: sock_getc(), sock_gets(), sock_read(), and

sock_fastread(). These functions will read the data as it came into the socket, which is not
necessarily the data that was written to the socket.

The second mode of operation for reading uses the sock_recv_init(), sock_recv(), and

sock_recv_from() functions. The sock_recv_init() function installs a large buffer
area that gets divided into smaller buffers. Whenever a datagram arrives, DCRTCP.LIB stuffs that
datagram into one of these new buffers. The sock_recv() and sock_recv_from() func-
tions scan these buffers. After calling sock_recv_init on the socket, you should not use

sock_getc(), sock_read(), or sock_fastread().

The sock_recv() function scans the buffers for any datagrams received by that socket. If there

is a datagram, the length is returned and the user buffer is filled, otherwise sock_recv() returns

zero.
14 TCP/IP User’s Manual

The sock_recv_from() function works like sock_recv(), but it allows you to record the

IP address where the datagram originated. If you want to reply, you can open a new UDP socket
with the IP address modified by sock_recv_from().

2.3.4 Checksums
There is an optional checksum field inside the UDP header. This field verifies only the header por-
tion of the packet and doesn’t cover the data. This feature can be disabled on a reliable network

where the application has the ability to detect transmission errors. Disabling the UDP checksum

can increase the performance of UDP packets moving through DCRTCP.LIB. This feature can be

modified by:

sock_mode(s, UDP_MODE_CHK); // enable checksums
sock_mode(s, UDP_MODE_NOCHK); // disable checksums

The first parameter is a pointer to the socket’s data structure, either tcp_Socket or
udp_Socket.

2.4 Skeleton Program
The following program is a general outline for a Dynamic C TCP/IP program. The first couple of
defines set up the default IP configuration information. The “memmap” line causes the program to

compile as much code as it can in the extended code window. The “use” line causes the compiler
to compile in the Dynamic C TCP/IP code using the configuration data provided above it.

Pingme.c:

To run this program, start Dynamic C and open the SAMPLES\TCPIP\ICMP\PINGME.C file.
Edit the MY_IP_ADDRESS, MY_NETMASK, and MY_GATEWAY macros to reflect the appropriate

values for your device. Run the program and try to run ping 10.10.6.101 from a command

line on a computer on the same physical network, replacing 10.10.6.101 with your value for
MY_IP_ADDRESS.

2.4.1 TCP/IP Stack Initialization
The main() function first initializes the TCP/IP stack with a call to sock_init(). This call
initializes internal data structures and enables the Ethernet chip, which will take a couple of sec-
onds with the RealTek chip. At this point, DCRTCP.LIB is ready to handle incoming packets.

#define MY_IP_ADDRESS "10.10.6.101"
#define MY_NETMASK "255.255.255.0"
#define MY_GATEWAY "10.10.6.19"
#memmap xmem
#use dcrtcp.lib
main() {

sock_init();
for (;;) {

tcp_tick(NULL);
}

}

Chapter 2: TCP/IP Engine 15

2.4.2 Packet Processing
Incoming packets are processed whenever tcp_tick() is called. The user-callable functions

that call tcp_tick() are: tcp_open, udp_open, sock_read, sock_write,
sock_close, and sock_abort. Some of the higher-level protocols, e.g. HTTP.LIB, will call
tcp_tick() automatically.

It is a good practice to make sure that tcp_tick() is called periodically in your program to

insure that the TCP/IP engine has had a chance to process packets. A rule of thumb is to call
tcp_tick() around 10 times per second, although slower or faster call rates should also work.
The Ethernet interface chip has a large buffer memory, and TCP/IP is adaptive to the data rates

that both end of the connection can handle; thus the system will generally keep working over a

wide variety of tick rates.

2.4.3 TCP/IP Daemon Computing Time
The computing time consumed by each call to tcp_tick() varies. Rough numbers are less than

a millisecond if there is nothing to do, 10s of milliseconds for typical packet processing, and 100s

of milliseconds under exceptional circumstances.

2.5 State-Based Program Design
An efficient design strategy is to create a state machine within a function and pass the socket’s

data structure as a function parameter. This method allows you to handle multiple sockets without
the services of a multitasking kernel. This is the way the HTTP.LIB functions are organized.
Many of the common Internet protocols fit well into this state machine model.

The general states are:

• Waiting to be initialized

• Waiting for a connection

• Connected states that perform the real work

• Waiting for the socket to be closed

An example of state-based programming is SAMPLES\TCPIP\STATE.C. This program is a

basic Web server that should work with most browsers. It allows a single connection at a time, but
can be extended to allow multiple connections.

2.5.1 Blocking vs. Non-Blocking
There is a choice between blocking and non-blocking functions when doing socket I/O.

 2.5.1.1 Non-Blocking Functions
The sock_fastread() and sock_preread() functions read as much data as is available in

the buffers, and return immediately. Similarly, the sock_fastwrite() function fills the buff-
16 TCP/IP User’s Manual

ers and returns the number of characters that were written. When using these functions, you must
ensure that all of the data were written completely.

 2.5.1.2 Blocking Functions
The other functions (sock_getc(), sock_gets(), sock_putc(), sock_puts(),
sock_read() and sock_write()) do not return until they have completed or there is an

error. If it is important to avoid blocking, you can check the conditions of an operation to insure

that it will not block.

In this case sock_gets() will not block because it will be called only when there is a complete

new line terminated record to read.

 2.5.1.3 Blocking Macros
To block at a certain point and wait for a condition, DCRTCP.LIB provides the macros

sock_wait_closed, sock_wait_established and sock_wait_input, to make this

task easier.

In this program fragment, sock_wait_established is used to block the program until a con-
nection is established. Notice the timeout (second parameter) value of zero. This tells Dynamic C

to never timeout. Associated with these macros is a sock_err label to jump to when there is an

error. If you supply a pointer to a status integer, it will set the status to an error code. Valid error
codes are -1 for timeout and 1 for a reset connection.

offset=0;
while(offset<length) {
bytes_written=sock_fastwrite(&socket,buffer+offset,length-offset);
if(bytes_written<0) {

// error handling
}
offset+=bytes_written;

}

sock_mode(socket,TCP_MODE_ASCII);
// ...
if (sock_bytesready(&my_socket) != -1){

sock_gets(buffer,MAX_BUFFER);
}

Chapter 2: TCP/IP Engine 17

2.6 Multitasking and TCP/IP
Dynamic C’s TCP/IP implementation is compatible with both µC/OS-II and with the language

constructs that implement cooperative multitasking: costatements and cofunctions. Note that
TCP/IP is not compatible with the slice statement.

2.6.1 µC/OS-II
The TCP/IP engine may be used with the µC/OS-II real-time kernel. The line

#use ucos2.lib

 must appear before the line

#use dcrtcp.lib

2.6.2 Cooperative Multitasking
The following program demonstrates the use of multiple TCP sockets with costatements. After
compiling and running the program, make the following telnet connections using your own IP

address:

telnet 10.10.6.11 8888
telnet 10.10.6.11 8889

tcp_open(&s,0,ip,PORT,NULL);
sock_wait_established(&s,0,NULL,&status);

//...

sock_err:
switch(status) {

case 1: /* foreign host closed */
printf("User closed session\n");
break;

case -1: /* timeout */
printf("\nConnection timed out\n");
break;

}

18 TCP/IP User’s Manual

#define MY_IP_ADDRESS "10.10.6.11"
#define MY_NETMASK "255.255.255.0"
#define MY_GATEWAY "10.10.6.1"

#define PORT1 8888
#define PORT2 8889

#define SOCK_BUF_SIZE 2048
#define MAX_SOCKETS 2

#memmap xmem
#use "dcrtcp.lib"

tcp_Socket Socket_1;
tcp_Socket Socket_2;

#define MAX_BUFSIZE 512
char buf1[MAX_BUFSIZE], buf2[MAX_BUFSIZE];

// The function that actually does the TCP work
cofunc int basic_tcp[2](tcp_Socket *tcp_sock, int port, char *buf){

auto int length, space_avaliable;
auto sock_type *s;
s = (sock_type *)tcp_sock;

tcp_listen(tcp_sock, port, 0, 0, NULL, 0);

// wait for a connection
while((-1 == sock_bytesready(s)) && (0 == sock_established(s))) {

// give other tasks time to do things while we are waiting
yield;

}
while(sock_established(s)) {

space_avaliable = sock_tbleft(s);
// limit transfer size to MAX_BUFSIZE, leave room for '\0'
if(space_avaliable > (MAX_BUFSIZE-1))

space_avaliable = (MAX_BUFSIZE-1);
// get some data
length = sock_fastread(s, buf, space_avaliable);

if(length > 0) { // did we receive any data?
buf[length] = '\0'; // print it to the stdio window
printf("%s",buf);
// send it back out to the user's telnet session
// sock_fastwrite will work-we verified the space beforehand
sock_fastwrite(s, buf, length);

}
yield; // give other tasks time to run

}
sock_close(s);
return 1;

}

Chapter 2: TCP/IP Engine 19

main() {
sock_init();
while (1) {

costate {
// Go do the TCP/IP part, on the first socket
wfd basic_tcp[0](&Socket_1, PORT1, buf1);

}
costate {

// Go do the TCP/IP part, on the second socet
wfd basic_tcp[1](&Socket_2, PORT2, buf2);

}
costate {

// drive the tcp stack
tcp_tick(NULL);

}
costate {

// Can insert application code here!
waitfor(DelayMs(100));

}
}

}

20 TCP/IP User’s Manual

2.7 Function Reference
This section contains descriptions for all user-callable functions in DCRTCP.LIB. Descriptions

for select user-callable functions in ARP.LIB, ICMP.LIB, BSDNAME.LIB and XMEM.LIB are

also included. Note that ARP.LIB, ICMP.LIB and BSDNAME.LIB are automatically #use’d

from DCRTCP.LIB.

int _arp_resolve(longword ina, eth_address *ethap, int nowait);

DESCRIPTION

Gets the Ethernet address for the given IP address.

PARAMETERS

ina The IP address to resolve to an Ethernet address.

ethap The buffer to hold the Ethernet address.

nowait If 0, return immediately; else if !0 wait up to 5 seconds trying to re-
solve the address.

RETURN VALUE

1: Success;
0: Failure.

LIBRARY

ARP.LIB

_arp_resolve
Chapter 2: TCP/IP Engine 21

longword _chk_ping(longword host_ip, longword
*sequence_number);

DESCRIPTION

Checks for any outstanding ping replies from host. _chk_ping should be called fre-
quently with a host IP address. If an appropriate packet is found from that host IP address,
the sequence number is returned through *sequence_number. The time difference

between our request and their response is returned in milliseconds.

PARAMETERS

host_ip IP address to receive ping reply from.

sequence_number Sequence number of reply.

RETURN VALUE

Time in milliseconds from the ping request to the host’s ping reply.
If _chk_ping returns 0xffffffffL, there were no ping receipts on this current call.

LIBRARY

ICMP.LIB

_chk_ping
22 TCP/IP User’s Manual

char * getdomainname(char *name, int length);

DESCRIPTION

Gets the current domain name. The domain name can be changed by the setdomain-
name function.

PARAMETERS

name Buffer to place the name.

length Max length of the name, or zero to get pointer to internal domain

name string.

RETURN VALUE

If length >= 1 return pointer to name. If length is not long enough to hold the

domain name, a NULL string is written to name.
If length = 0 return pointer to internal string containing the domain name. Do not mod-
ify this string!

LIBRARY

BSDNAME.LIB

SEE ALSO

setdomainname, gethostname, sethostname, getpeername,
getsockname

EXAMPLE

getdomainname

main() {
sock_init();
printf("Using %s for a domain\n", getdomainname(NULL, 0));

}

Chapter 2: TCP/IP Engine 23

u r
longword gethostid(void);

DESCRIPTION

Return the IP address of the controller in host format.

RETURN VALUE

IP address in host format, or zero if not assigned or not valid.

LIBRARY

DCRTCP.LIB

SEE ALSO

sethostid

EXAMPLE

char * gethostname(char *name, int length);

DESCRIPTION

Gets the host portion of our name.

PARAMETERS

name Buffer to place the name.

length Max length of the name, or zero for internal.

RETURN VALUE

If length >=1, return name;
else if length = 0, return internal host name buffero
24 TCP/IP User’s Manual

int getpeername(sock_type * s, void * dest, int * len);

DESCRIPTION

Gets the peer's IP address and port information for the specified socket.

PARAMETERS

s Pointer to the socket.

dest Pointer to sockaddr to hold the socket information for the remote

end of the socket.The data structure is:

len Pointer to the length of sockaddr. A NULL pointer can be used to

represent the sizeof(struct sockaddr).

RETURN VALUE

0: success;
-1: failure.

LIBRARY

BSDNAME.LIB

SEE ALSO

getsockname

getpeername

typedef struct sockaddr {
word s_type; /* reserved */
word s_port; /* port number, or zero if not connected */
longword s_ip; /* IP address, or zero if not connected */
byte s_spares[6]; /* not used for tcp/ip connections */

};
Chapter 2: TCP/IP Engine 25

int getsockname(sock_type * s, void * dest, int * len);

DESCRIPTION

Gets the controller’s IP address and port information for a particular socket.

PARAMETERS

 s Pointer to the socket.

dest Pointer to sockaddr to hold the socket information for the local
end of the socket. The data structure is:

len Pointer to the length of sockaddr. A NULL pointer can be used to

represent the sizeof(struct sockaddr). BSDNAME.LIB

will assume 14 bytes if a NULL pointer is passed.

RETURN VALUE

0: Success;
-1: Failure.

LIBRARY

BSDNAME.LIB

SEE ALSO

getpeername

getsockname

typedef struct sockaddr {
word s_type; /* reserved */
word s_port; /* port number, or zero if not connected */
longword s_ip; /* IP address, or zero if not connected */
byte s_spares[6]; /* not used for tcp/ip connections */

};
26 TCP/IP User’s Manual

longword htonl(longword value);

DESCRIPTION

This function converts a host-ordered double word to a network-ordered double word.
This function is necessary if you are implementing standard internet protocols because

the Rabbit does not use the standard for network byte ordering. The network orders bytes

with the most significant byte first and the least significant byte last. On the Rabbit, the

bytes are in the opposite order.

PARAMETERS

value Host-ordered double word.

RETURN VALUE

Host word in network format, e.g. htonl(0x44332211) returns 0x11223344.

LIBRARY

DCRTCP.LIB

SEE ALSO

htons, ntohl, ntohs

word htons(word value);

DESCRIPTION

Converts host-ordered word to a network-ordered word. This function is necessary if you

are implementing standard internet protocols because the Rabbit does not use the stan-
dard for network byte ordering. The network orders bytes with the most significant byte

first and the least significant byte last. On the Rabbit, the bytes are in the opposite order
within each 16-bit section.

PARAMETERS

value Host-ordered word.

RETURN VALUE

Host-ordered word in network-ordered format, e.g. htons(0x1122) returns 0x2211.

LIBRARY

DCRTCP.LIB

SEE ALSO

htonl, ntohl, ntohs

htonl

htons
Chapter 2: TCP/IP Engine 27

longword inet_addr(char * dotted_ip_string);

DESCRIPTION

Converts an IP address from dotted decimal IP format to its binary representation. No

check is made as to the validity of the address.

PARAMETERS

dotted_ip_string Dotted decimal IP string, e.g. "10.10.6.100".

RETURN VALUE

0: Failure;
Binary representation of dotted_ip_string: Success.

LIBRARY

DCRTCP.LIB

SEE ALSO

inet_ntoa

inet_addr
28 TCP/IP User’s Manual

char *inet_ntoa(char *s, longword ip);

DESCRIPTION

Converts a binary IP address to its dotted decimal format, e.g.
inet_ntoa(s,0x0a0a0664) returns a pointer to "10.10.6.100".

PARAMETERS

s Location to place the dotted decimal string. A sufficient buffer size

would be 16 bytes.

ip The IP address to convert.

RETURN VALUE

Pointer to dotted decimal string, i.e. s.

LIBRARY

DCRTCP.LIB

SEE ALSO

inet_addr

word ip_timer_expired(void * s);

DESCRIPTION

Checks the timer field (set by ip_timer_init()) inside the socket structure. This
function is used in the sock_wait_... macros to provide timeouts.

PARAMETERS

s Pointer to a socket.

RETURN VALUE

0: Not expired;
1: Expired.

LIBRARY

DCRTCP.LIB

inet_ntoa

ip_timer_expired
Chapter 2: TCP/IP Engine 29

EXAMPLE USING IP_TIMER_EXPIRED

The following code is from a blocking configuration macro that calls the function

_ip_delay2.

_ip_delay2(void *s, int timeoutseconds, procref fn, int *statusptr) {
int status;
ip_timer_init(s , timeoutseconds); /* set timeout */
do {

kbhit(); /* permit ^c */
if (!tcp_tick(s)) {

status = 1; /* fully closed or reset */
break;

}
if (ip_timer_expired(s)) { /* check for expiration */

sock_abort(s); /* give up and use reset */
status = -1; /* signal an error */
break;

}
if (fn) { /* call optional user function */

if (status = fn(s))
break;

}
if (s->tcp.usr_yield)

(*s->tcp.usr_yield)(); /* call yield */
} while (1);
if (statusptr) *statusptr = status;
return(status);

}

30 TCP/IP User’s Manual

void ip_timer_init(void * s, word seconds);

DESCRIPTION

Sets a timer inside the socket structure.

PARAMETERS

s Pointer to a socket.

seconds Number of seconds for the time-out, if this value is zero, never time-
out.

LIBRARY

DCRTCP.LIB

SEE ALSO

ip_timer_expired

longword ntohl(longword value);

DESCRIPTION

Converts network-ordered long word to host-ordered long word. This function is neces-
sary if you are implementing standard internet protocols because the Rabbit does not use

the standard for network byte ordering. The network orders bytes with the most signifi-
cant byte first and the least significant byte last. On the Rabbit, the bytes are in the oppo-
site order.

PARAMETERS

value Network-ordered long word.

RETURN VALUE

Network-ordered long word in host-ordered format,
e.g. ntohl(0x44332211) returns 0x11223344

LIBRARY

DCRTCP.LIB

SEE ALSO

htons, ntohs, htonl

ip_timer_init

ntohl
Chapter 2: TCP/IP Engine 31

word ntohs(word value);

DESCRIPTION

Converts network-ordered word to host-ordered word. Converts host-ordered word to a

network-ordered word. This function is necessary if you are implementing standard in-
ternet protocols because the Rabbit does not use the standard for network byte ordering.
The network orders bytes with the most significant byte first and the least significant byte

last. On the Rabbit, the bytes are in the opposite order.

PARAMETERS

value Network-ordered word.

RETURN VALUE

Network-ordered word in host-ordered format,
e.g. ntohs(0x2211) returns 0x1122

LIBRARY

DCRTCP.LIB

SEE ALSO

htonl, ntohl, htons

unsigned long paddr(void* pointer);

DESCRIPTION

Converts a logical pointer into its physical address. Use caution when converting address

in the E000-FFFF range. This function will return the address based on the XPC on entry.

PARAMETERS

pointer Pointer to convert.

RETURN VALUE

Physical address of pointer.

LIBRARY

XMEM.LIB

ntohs

paddr
32 TCP/IP User’s Manual

void pd_getaddress(int nic, void* buffer);

DESCRIPTION

This function copies the Ethernet address (e.g., MAC address) into the buffer.

PARAMETERS

nic This parameter is reserved for future expandability and for now

should be assigned a value of 0.

buffer Place to copy address to. Must be at least 6 byes.

RETURN VALUE

None

LIBRARY

PKTDRV.LIB

EXAMPLE

pd_getaddress

main() {
char buf[6];
sock_init();
pd_getaddress(0,buf);

printf("Your Link Address is:%02x%02x:%02x%02x:%02x%02x \n",
buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);

}

Chapter 2: TCP/IP Engine 33

int _ping(longword host_ip, longword sequence_number);

DESCRIPTION

Generates an ICMP request for host. NOTE: this is a macro that calls _send_ping.

PARAMETERS

host_ip IP address to send ping.

sequence_number User-defined sequence number.

RETURN VALUE

0: Success;
!0: Failure.

LIBRARY

ICMP.LIB

SEE ALSO

_chk_ping, _send_ping

void psocket(void * s);

DESCRIPTION

Given an open UDP or TCP socket, the IP address of the remote host is printed out to the

Stdio window in dotted IP format followed by a colon and the decimal port number on

that machine. This routine can be useful for debugging your programs.

PARAMETERS

s Pointer to a socket.

RETURN VALUE

None.

LIBRARY

BSDNAME.LIB

_ping

psocket
34 TCP/IP User’s Manual

longword resolve(char *host_string);

DESCRIPTION

Converts a text string, which contains either the dotted IP address or host name, into the

longword containing the IP address. In the case of dotted IP, no validity check is made for
the address. NOTE: this function blocks. Names are currently limited to 128 characters.
If it is necessary to lookup larger names include the following line in the application pro-
gram:

#define MAX_DOMAIN_LENGTH <len in chars>.

If DISABLE_DNS has been defined this function will not do DNS lookup.

If you are trying to resolve a host name, you must set up at least one name server. You can

set the default name server by defining the MY_NAMESERVER macro at the top of your
program. When you call resolve(), it will contact the name server and request the IP

address. If there is an error, resolve() will return 0L.

To simply convert dotted IP to longword, see inet_addr().

For a sample program, see the Example Using tcp_open() listed under tcp_open().

PARAMETERS

host_string Pointer to text string to convert.

RETURN VALUE

0 if failure,
!0 is the IP address *host_string resolves to.

LIBRARY

DCRTCP.LIB

SEE ALSO

_arp_resolve, inet_addr, inet_ntoa

resolve
Chapter 2: TCP/IP Engine 35

char * rip(char * string);

DESCRIPTION

Strips newline (\n) and/or carriage return (\r) from a string. Only the first \n and \r char-
acters are replaced with \0s. The resulting string beyond the first \0 character is undefined.

PARAMETERS

string Pointer to a string.

RETURN VALUE

Pointer to the modified string.

LIBRARY

DCRTCP.LIB

EXAMPLE

In ASCII mode sock_puts() adds \n; rip is used to make certain the string does not
already have a newline character. Remember, rip modifies the source string, not a

copy!

rip

setmode(s, TCP_MODE_ASCII);
...
sock_puts(s, rip(questionable_string));
36 TCP/IP User’s Manual

int _send_ping(longword host, longword countnum, byte ttl, byte
tos, longword *theid)

DESCRIPTION

Generates an ICMP request for host.

PARAMETERS

host IP address to send ping.

countnum User-defined count number.

ttl Time to live for the packets (hop count). 255 is a standard value for
this field.

tos Type of service on the packets.

theid The identifier that was sent out.

RETURN VALUE

0: Successful;
-1: Failure.

LIBRARY

ICMP.LIB

See also
_chk_ping, _ping

_send_ping
Chapter 2: TCP/IP Engine 37

char *setdomainname(char *name);

DESCRIPTION

The domain name returned by getdomainname() and used for resolve() is set
to the value in the string pointed to by name. Changing the contents of the string after a

setdomainname() will change the value of the system domain string. It is not rec-
ommended. Instead dedicate a static location for holding the domain name.

setdomainname(NULL) is an acceptable way to remove any domain name and

subsequent resolve calls will not attempt to append a domain name.

PARAMETERS

name Pointer to string.

RETURN VALUE

Pointer to string that was passed in.

LIBRARY

BSDNAME.LIB

SEE ALSO

getdomainname, sethostname, gethostname, getpeername,
getsockname

setdomainname
38 TCP/IP User’s Manual

longword sethostid(longword ip);

DESCRIPTION

This function changes the system’s default IP address, overriding the macro

MY_IP_ADDRESS. Changing this address will disrupt existing TCP or UDP sessions.
You should close all sockets before calling this function.

PARAMETERS

ip New IP address.

RETURN VALUE

New IP address.

LIBRARY

DCRTCP.LIB

SEE ALSO

gethostid

char * sethostname(char *name);

DESCRIPTION

Sets the host portion of our name.

PARAMETERS

name The new host name.

RETURN VALUE

Pointer to internal hostname buffer on success, or
NULL on error (if hostname is too long).

LIBRARY

BSDNAME.LIB

sethostid

sethostname
Chapter 2: TCP/IP Engine 39

void sock_abort(void * s);

DESCRIPTION

Close a connection immediately. Under TCP this is done by sending a RST (reset). Under
UDP there is no difference between sock_close() and sock_abort().

PARAMETERS

s Pointer to a socket.

RETURN VALUE

None.

LIBRARY

DCRTCP.LIB

SEE ALSO

sock_close

sock_abort
40 TCP/IP User’s Manual

int sock_bytesready(void * s);

DESCRIPTION

If the socket is in binary mode, sock_bytesready returns the number of bytes wait-
ing to be read. If there are no bytes waiting, it returns -1.

In ASCII mode, sock_bytesready returns -1 if there are no bytes waiting to be read

or the line that is waiting is incomplete (no line terminating character has been read.) The

number of bytes waiting to be read will be returned given one of the following conditions:

• the buffer is full
• the socket has been closed (no line terminating character can be sent,)
• a complete line is waiting

In ASCII mode, a blank line will be read as a complete line with length 0, which will be

the value returned. sock_bytesready handles ASCII mode sockets better than

sock_dataready, since it can distinguish between an empty line on the socket and an

empty buffer.

PARAMETERS

s Pointer to a socket.

RETURN VALUE

-1: No bytes waiting to be read
0: In ASCII mode and a blank line is waiting to be read

>0: The number of bytes waiting to be read

LIBRARY

DCRTCP.LIB

SEE ALSO

sock_wait_established, sock_established, sockstate

sock_bytesready
Chapter 2: TCP/IP Engine 41

void sock_close(void * s);

DESCRIPTION

Attempts to close a socket; no more data may be sent or received through that socket.

In the case of UDP, the socket is closed immediately since UDP is a connectionless pro-
tocol. TCP, however, is a connection-oriented protocol so the close must be negotiated

with the remote computer. Use sock_wait_closed or wait for tcp_tick() to re-
turn 0 when passed the socket to ensure that a TCP connection is closed.

In emergency cases, it is possible to abort the TCP connection rather than close it. Al-
though not recommended for normal transactions, this service is available and is used by

all TCP/IP systems.

PARAMETERS

s Pointer to a socket.

LIBRARY

DCRTCP.LIB

SEE ALSO

sock_abort, sock_tick, sock_wait_closed

int sock_dataready(void *s);

DESCRIPTION

Gets the number of bytes waiting to be read. If in ASCII mode, it returns zero if a newline

character has not been read or the buffer is not full. See sock_bytesready() for a

more general function.

PARAMETERS

s Pointer to a socket.

RETURN VALUE

0: No bytes to read;
!0: Number of bytes ready to read.

LIBRARY

DCRTCP.LIB

sock_close

sock_dataready
42 TCP/IP User’s Manual

char *sockerr(void * s);

DESCRIPTION

Gets the last ASCII error message recorded for a particular socket. If no messages have

been recorded, the returned value is NULL. The messages are read-only; do not modify

them!

PARAMETERS

s Pointer to a socket.

RETURN VALUE

Pointer to last error message, or
NULL pointer if there have been no error messages.

LIBRARY

DCRTCP.LIB

EXAMPLE

sockerr

char *p;
...
sock_err:
if (status == 1)

puts("Closed normally");
else if (p = sockerr(s))

printf("Socket closed with error '%s'\n\r", p);
Chapter 2: TCP/IP Engine 43

int sock_established(void *s);

DESCRIPTION

TCP connections require a handshaked open to ensure that both sides recognize a con-
nection. Whether the connection was initiated with tcp_open() or tcp_listen(),
sock_establish() will continue to return 0 until the connection is established, at
which time it will return 1. It is not enough to spin on this after a listen because it is pos-
sible for the socket to be opened, written to and closed between two checks.
sock_bytesready() can be called with sock_established() to handle this

case.

UDP is a connectionless protocol, hence sock_established() always returns 1 for
UDP sockets.

PARAMETERS

s Pointer to a socket.

RETURN VALUE

0: Not established;
1: Established.

LIBRARY

DCRTCP.LIB

SEE ALSO

sock_wait_established, sock_bytesready, sockstate

sock_established
44 TCP/IP User’s Manual

int sock_fastread(void *s, byte *dp, int len);

DESCRIPTION

sock_fastread() attempts to read data from a socket. If possible, the buffer, dp, is

filled, otherwise, only the number of bytes read is returned. A return value of -1 indicates

a socket error.

This function cannot be used on UDP sockets after sock_recv_init() is called.

For a sample program, see Example of four input functions listed under sock_read().

PARAMETERS

s Pointer to a socket.

dp Buffer to put bytes that are read.

len Maximum number of bytes to write to the buffer.

RETURN VALUE

Number of bytes read or -1 if there was an error.

LIBRARY

DCRTCP.LIB

SEE ALSO

sock_read, sock_fastwrite, sock_write

sock_fastread
Chapter 2: TCP/IP Engine 45

int sock_fastwrite(void *s, byte *dp, int len);

DESCRIPTION

Writes up to len bytes from dp on socket s. This function writes as many bytes as pos-
sible to the socket and returns that number of bytes.

For UDP, sock_fastwrite() will send one record if
len <= ETH_MTU - 20 - 8

ETH_MTU is the Ethernet Maximum Transmission Unit; 20 is the IP header size and 8 is

the UDP header size. By default, this is 572 bytes. If len is greater than this number, then

the function does not send the data and returns -1. Otherwise, the UDP datagram would

need to be fragmented.

For TCP, the new data is queued for sending and sock_fastwrite() returns the

number of bytes that will be sent. The data may be transmitted immediately if enough

data is in the buffer, or sufficient time has expired, or the user has explicitly used

sock_flushnext() to indicate this data should be flushed immediately. In either
case, no guarantee of acceptance at the other end is possible.

PARAMETERS

s Pointer to a socket.

dp Buffer to be written.

len Maximum number of bytes to write to the socket.

RETURN VALUE

Number of bytes written, or
-1 if there was an error.

LIBRARY

DCRTCP.LIB

sock_fastwrite
46 TCP/IP User’s Manual

void sock_flush(void *s);

DESCRIPTION

sock_flush() will flush the unwritten portion of the TCP buffer to the network. No

guarantee is given that the data was actually delivered. In the case of a UDP socket, no

action is taken.

sock_flushnext() is recommended over sock_flush().

PARAMETERS

s Pointer to a socket.

RETURN VALUE

None.

LIBRARY

DCRTCP.LIB

SEE ALSO

sock_flushnext, sock_fastwrite, sock_write, sockerr

sock_flush
Chapter 2: TCP/IP Engine 47

void sock_flushnext(void *s);

DESCRIPTION

Writing to TCP sockets does not guarantee that the data are actually transmitted or that
the remote computer will pass that data to the other client in a timely fashion. Using a

flush function will guarantee that DCRTCP.LIB places the data onto the network. No

guarantee is made that the remote client will receive that data.

sock_flushnext() is the most efficient of the flush functions. It causes the next
function that sends data to the socket to flush, meaning the data will be transmitted im-
mediately.

Several functions imply a flush and do not require an additional flush: sock_puts(),
and sometimes sock_putc() (when passed a \n).

PARAMETERS

s Pointer to a socket.

RETURN VALUE

None.

LIBRARY

DCRTCP.LIB

SEE ALSO

sock_write, sock_fastread, sock_read, sockerr,
sock_wait_input, sock_flush, sock_flushnext

sock_flushnext
48 TCP/IP User’s Manual

int sock_getc(void *s);

DESCRIPTION

Gets the next character from the socket. NOTE: This function blocks.

This function cannot be used on UDP sockets after sock_recv_init() is called.

For a sample program, see Example of four input functions listed under sock_read().

PARAMETERS

s Pointer to a socket.

RETURN VALUE

Character read or -1 if error.

LIBRARY

DCRTCP.LIB

sock_getc
Chapter 2: TCP/IP Engine 49

int sock_gets(void *s, char *text, int len);

DESCRIPTION

Reads a string from a socket and replaces the CR or LF with a '\0'. If the string is longer
than len, the string is null terminated and the remaining characters in the string are dis-
carded.

To use sock_gets(), you must first set ASCII mode using sock_mode().

This function cannot be used on UDP sockets after sock_recv_init() is called.

For a sample program, see Example of four input functions listed under sock_read().

PARAMETERS

s Pointer to a socket

text Buffer to put the string.

len Max length of buffer.

RETURN VALUE

0 if buffer is empty, or if no '\r' or '\n' is read, but buffer had room and the connection can

get more data;
!0 is the length of the string.

LIBRARY

DCRTCP.LIB

SEE ALSO

sock_puts, sock_putc, sock_getc, sock_read, sock_write

void sock_init(void);

DESCRIPTION

This function initializes the packet driver and DCRTCP.LIB using the compiler defaults
for configuration. This function must be called before using other DCRTCP.LIB func-
tions.

LIBRARY

DCRTCP.LIB

sock_gets

sock_init
50 TCP/IP User’s Manual

void sock_mode(void *s, word mode);

DESCRIPTION

This function changes some of the basic handling of a socket. The following macros can

be passed as the 2nd parameter (OR’d together if necessary):

TCP_MODE_ASCII | TCP_MODE_BINARY

TCP and UDP sockets are usually in binary mode which means an arbitrary stream

of bytes is allowed (TCP is treated as a byte stream and UDP is treated as records

filled with bytes.) The default is TCP_MODE_BINARY. By changing the mode to

TCP_MODE_ASCII, some of the DCRTCP.LIB functions will see a stream of
records terminated with a newline character.

In ASCII mode, sock_bytesready() will return -1 until a newline-terminated

string is in the buffer or the buffer is full. sock_puts() will append a newline to

any output. sock_gets() (which should only be used in ASCII mode) removes

the newline and null terminates the string.

For a sample program, see Example of four input functions listed under
sock_read().

TCP_MODE_NAGLE | TCP_MODE_NONAGLE

The Nagle algorithm may substantially reduce network traffic with little negative ef-
fect on a user (In some situations, the Nagle algorithm even improves application per-
formance.) The default is TCP_MODE_NAGLE. This mode only affects TCP

connections. If you are doing X-Windows or real time data collection, you may

switch the Nagle algorithm off by selecting the TCP_MODE_NONAGLE flag.

UDP_MODE_CHK | UDP_MODE_NOCHK

Checksums are required for TCP, but not for UDP. The default is UDP_MODE_CHK.

If you are providing a checksum at a higher level, the low level checksum may be

redundant. The checksum for UDP can be disabled by selecting the

UDP_MODE_NOCHK flag. Note that you do not control whether the remote comput-
er will send checksums. If that computer does checksum its outbound data,
DCRTCP.LIB will check the received packet's checksum.

PARAMETERS

s Pointer to a socket.

mode New mode for specified socket.

LIBRARY

DCRTCP.LIB

sock_mode
Chapter 2: TCP/IP Engine 51

int sock_preread(void *s, byte *dp, int len);

DESCRIPTION

This function reads up to len bytes from the socket into the buffer dp. The bytes are not
removed from the socket's buffer.

PARAMETERS

s Pointer to a socket.

dp Buffer to preread into.

len Maximum number of bytes to preread.

RETURN VALUE

0: No data waiting;
-1: Error;
>0: Number of preread bytes.

LIBRARY

DCRTCP.LIB

SEE ALSO

sock_fastread, sock_fastwrite, sock_read, sock_write

sock_preread
52 TCP/IP User’s Manual

int sock_puts(void *s, byte *dp);

DESCRIPTION

A string is placed on the output buffer and flushed as described under
sock_flushnext(). If the socket is in ASCII mode, CR and LF are appended to the

string. No other ASCII character expansion is performed. Note that sock_puts() uses
sock_write(), and thus may block if the output buffer is full. See sock_write()

for more details.

PARAMETERS

s Pointer to a socket.

dp Buffer to read the string from.

RETURN VALUE

Length of string in buffer.

LIBRARY

DCRTCP.LIB

SEE ALSO

sock_gets, sock_putc, sock_getc, sock_read, sock_write

int sock_rbleft(void *s);

DESCRIPTION

Determines the number of bytes available in the receive buffer.

PARAMETERS

s Pointer to a socket.

RETURN VALUE

Number of bytes available in the receive buffer.

LIBRARY

DCRTCP.LIB

SEE ALSO

sock_rbsize, sock_rbused, sock_tbsize, sock_tbused,
sock_tbleft

sock_puts

sock_rbleft
54 TCP/IP User’s Manual

int sock_rbsize(void *s);

DESCRIPTION

Determines the size of the receive buffer for the specified socket.

PARAMETERS

s Pointer to a socket.

RETURN VALUE

The size of the receive buffer.

LIBRARY

DCRTCP.LIB

SEE ALSO

sock_rbleft, sock_rbused, sock_tbsize, sock_tbused,
sock_tbleft

int sock_rbused(void *s);

DESCRIPTION

Gets the number of bytes in use in the receive buffer for the specified socket.

PARAMETERS

s Pointer to a socket.

RETURN VALUE

Number of bytes in use.

LIBRARY

DCRTCP.LIB

SEE ALSO

sock_rbleft, sock_tbsize, sock_tbused, sock_tbleft

sock_rbsize

sock_rbused
Chapter 2: TCP/IP Engine 55

int sock_read(void *s, byte *dp, int len);

DESCRIPTION

sock_read() will busywait until len bytes are read or a socket error exists. If
sock_yield() has been called, the user-defined function that is passed to it will be

called in a tight loop while sock_read() is busywaiting.

This function cannot be used or
56 TCP/IP User’s Manual

EXAMPLE OF FOUR INPUT FUNCTIONS

The following program shows how the four main input functions may be used to read a

text stream. Note that sock_fastread() and sock_read() do not necessarily re-
turn a complete or single line, they return blocks of bytes. In comparison,
sock_getc() returns a single byte at a time and yields poor performance.

/*
* This is a sample FINGER program which compares sock_fastread(),
* sock_read(), sock_gets(), and sock_getc() for handling ASCII
* data.
*
* Note that sock_fastread(), sock_read(), and sock_getc()
* do NOT return single line strings, they return ordered bytes.
* sock_getc() looks the simplest, but it has the highest overhead
* both in terms of DCRTCP, and especially in terms of the output
* through putch().
*
* FINGER [user]@host mode where mode is 0, 1, 2 or 3 to indicate
* using sock_fastread(), sock_read(), sock_getc() or sock_gets().
* All modes returned identical output to the screen.
*/
Chapter 2: TCP/IP Engine 57

/***
* using sock_fastread() *
***/

#define MY_IP_ADDRESS "10.10.6.100"
#define MY_NETMASK "255.255.255.0"
#memmap xmem

#use "dcrtcp.lib"

#define FINGER_PORT 79

finger(char* userid, char* host, longword hoststring, int method) {
tcp_Socket fingersock;
tcp_Socket *s;
char buffer[513];/* space for 512 plus zero terminator */
int status;
int len;

s = &fingersock;
if (!tcp_open(s, 0, host, FINGER_PORT, NULL)) {

puts("Sorry, unable to connect to that machine right now!");
return;

}
printf("waiting...\r");
sock_wait_established(s, sock_delay , NULL, &status);

if (*userid)
printf("'%s' is looking for '%s'...\n\r\n\n", hoststring, userid);

strcpy(buffer, userid);
rip(buffer);/* kill all \n and \r's */
strcat(buffer , "\n");

sock_puts(s, buffer);

switch (method) {

case 0 :
while (1) {

sock_wait_input(s, 30, NULL, &status);

len = sock_fastread(s, buffer, 512);
buffer[len] = 0; /* must terminate it */
printf("%s", buffer);

}
break;
58 TCP/IP User’s Manual

/***
* using sock_read() *
***/

/***
* using sock_getc() *
***/

case 1 :
while(1) {

sock_wait_input(s, 30, NULL, &status);
len = sock_dataready(s);
if (len > sizeof(buffer))
len = sizeof(buffer);

sock_read(s, buffer, len);
buffer[len] = 0;
printf("%s", buffer);

}
break;

case 2 :
while (1) {

sock_wait_input(s, 30, NULL, &status);
putch(sock_getc(s));

}
break;
Chapter 2: TCP/IP Engine 59

/***
* using sock_gets() *
***/

case 3 :
sock_mode(s, TCP_MODE_ASCII);
while (1) {

sock_wait_input(s, 30, NULL, &status);
len = sock_gets(s, buffer, 512);
puts(buffer);

}
break;

}
sock_err:

switch (status) {
case 1 : /* foreign host closed */

break;
case -1: /* timeout */

printf("\n\rConnection timed out!");
break;

}
sock_close(s);
printf("\n\r");

}

60 TCP/IP User’s Manual

char *meth[]={"sock_fastread", "sock_read", "sock_getc",
"sock_gets"};

main() {
char *user,*server;
longword host;
int status;
word method;

sock_init();

strcpy(user,"root");
strcpy(user,"foo.bar");
method=0; /* sock_fastread */

if (method > 3) {
puts("only values 0 through 3 are valid");
exit(2);

}
printf("Using method %s\n\r", meth[method]);
if (host = resolve(server)) {

status = finger(user, host, server, method);
} else {

printf("Could not resolve host '%s'\n\r", server);
exit(3);

}
exit(status);

}

Chapter 2: TCP/IP Engine 61

int sock_recv(sock_type *s, char *buffer, int len);

DESCRIPTION

After a UDP socket is initialized with udp_open() and sock_recv_init(),
sock_recv scans the buffers for any datagram received by that socket.

PARAMETERS

s Pointer to a UDP socket.

buffer Buffer to put datagram.

maxlength Length of buffer.

RETURN VALUE

Length of datagram;
0 if no datagram found;
-1 if receive buffer not initialized with sock_recv_init().

LIBRARY

DCRTCP.LIB

SEE ALSO

sock_recv_from, sock_recv_init

sock_recv
62 TCP/IP User’s Manual

EXAMPLE USING SOCK_RECV()

#define MY_IP_ADDRESS "10.10.6.100"
#define MY_NETMASK "255.255.255.0"
#memmap xmem

#use "dcrtcp.lib"

#define SAMPLE 401

udp_Socket data;
char bigbuf[8192];

main() {
word templen;
char spare[1500];

sock_init();
if (!udp_open(&data, SAMPLE, 0xffffffff, SAMPLE, NULL)) {

puts("Could not open broadcast socket");
exit(3);

}

/* set large buffer mode */
if (sock_recv_init(&data, bigbuf, sizeof(bigbuf))) {

puts("Could not enable large buffers");
exit(3);

}

sock_mode(&data, UDP_MODE_NOCHK); /* turn off checksums */

while (1) {
tcp_tick(NULL);

if (templen = sock_recv(&data, spare, sizeof(spare))) {
/* something received */

printf("Got %u byte packet\n", templen);
}

}
}

Chapter 2: TCP/IP Engine 63

int sock_recv_from(sock_type *s, long *hisip, word *hisport,
char *buffer, int len);

DESCRIPTION

After a UDP socket is initialized with udp_open() and sock_recv_init(),
sock_recv_from () scans the buffers for any datagram received by that socket and

identifies the remote host’s address.

PARAMETERS

s Pointer to UDP socket.

hisip IP of remote host, according to UDP header.

hisport Port of remote host.

buffer Buffer to put datagram in.

len Length of buffer.

RETURN VALUE

>0: Length of datagram received;
0: No datagram;

-1: Receive buffer was not initialized with sock_recv_init().

LIBRARY

DCRTCP.LIB

SEE ALSO

sock_recv, sock_recv_init

sock_recv_from
64 TCP/IP User’s Manual

int sock_recv_init(sock_type *s, void *space, word len);

DESCRIPTION

The basic socket reading functions (sock_read(), sock_fastread(), etc.) are

not adequate for all your UDP needs. The most basic limitation is their inability to treat
UDP as a record service.

A record service must receive distinct datagrams and pass them to the user program as

such. You must know the length of the received datagram and the sender (if you opened

in broadcast mode). You may also receive the datagrams very quickly, so you must have

a mechanism to buffer them.

Once a socket is opened with udp_open(), you can use sock_recv_init() to

initialize that socket for sock_recv() and sock_recv_from(). Note that
sock_recv() and related functions are incompatible with sock_read(),
sock_fastread(), sock_gets() and sock_getc(). Once you have used

sock_recv_init(), you can no longer use the older-style calls.

sock_recv_init() installs a large buffer area which gets segmented into smaller
buffers. Whenever a UDP datagram arrives, DCRTCP.LIB stuffs that datagram into one

of these new buffers. The new functions scan those buffers. You must select the size of
the buffer you submit to sock_recv_init(); make it as large as possible, say 4K,
8K or 16K.

For a sample program, see Example using sock_recv() listed under sock_recv().

PARAMETERS

s Pointer to a UDP socket.

space Buffer of temporary storage space to store newly received packets.

len Size of the buffer.

RETURN VALUE

0.

LIBRARY

DCRTCP.LIB

SEE ALSO

sock_recv_from, sock_recv

sock_recv_init
Chapter 2: TCP/IP Engine 65

char *sockstate(void * s);

DESCRIPTION

Returns a string that gives the current state for a socket.

PARAMETERS

s Pointer to a socket.

RETURN VALUE

An ASCII message which represents the current state of the socket. These strings should

not be modified.

“Listen" indicates a passively opened socket that is waiting for a connection.

"SynSent" and "SynRcvd" are connection phase intermediate states.

"Established" states that the connection is complete.

"EstClosing" "FinWait1" "FinWait2" "CloseWait" "Closing"

"LastAck" "TimeWait" and "CloseMSL" are connection termination intermediate

states.

"Closed" indicates that the connection is completely closed.

 "UDP Socket" is always returned for UDP sockets because they are stateless.

"Not an active socket" is a default value used when the socket is not recognized

as UDP or TCP.

LIBRARY

DCRTCP.LIB

SEE ALSO

sock_established, sock_dataready

sockstate

char *p;
...
#ifdef DEBUG
if (p = sockstate(s))

printf("Socket state is '%s'\n\r", p);
#endif DEBUG
66 TCP/IP User’s Manual

int sock_tbleft(void *s);

DESCRIPTION

Gets the number of bytes left in the transmit buffer. If you do not wish to block, you may

first query how much space is available for writing by calling this function before gener-
ating data that must be transmitted. This removes the need for your application to also

buffer data.

PARAMETERS

s Pointer to a socket.

RETURN VALUE

Number of bytes left in the transmit buffer.

LIBRARY

DCRTCP.LIB

SEE ALSO

sock_rbsize, sock_rbused, sock_rbleft, sock_tbsize,
sock_tbused

sock_tbleft

if (sock_tbleft(s) > 10) {
/* we can send up to 10 bytes without blocking or overflowing */
....

}

Chapter 2: TCP/IP Engine 67

int sock_tbsize(void *s);

DESCRIPTION

Determines the size of the transmit buffer for the specified socket.

PARAMETERS

s Pointer to a socket.

RETURN VALUE

The size of the transmit buffer.

LIBRARY

DCRTCP.LIB

SEE ALSO

sock_rbsize, sock_rbused, sock_rbleft, sock_tbleft,
sock_tbused

int sock_tbused(void *s);

DESCRIPTION

Gets the number of bytes in use in the transmit buffer for the specified socket.

PARAMETERS

s Pointer to a socket.

RETURN VALUE

Number of bytes in use.

LIBRARY

DCRTCP.LIB

SEE ALSO

sock_rbsize, sock_rbused, sock_rbleft, sock_tbsize,
sock_tbleft

sock_tbsize

sock_tbused
68 TCP/IP User’s Manual

sock_tick(void * s, int * optional_status_ptr);

DESCRIPTION

This macro calls tcp_tick() to quickly check incoming and outgoing data and to

manage all the open sockets. If our particular socket, s, is either closed or made inoper-
ative due to an error condition, sock_tick() sets the value of
*optional_status_ptr (if the pointer is not NULL) to 1, then jumps to a local,
user-supplied label, sock_err. If the socket connection is fine and the pointer is not
NULL *optional_status_ptr is set to 0.

PARAMETERS

s Pointer to a socket.

optional_status_ptr Pointer to status word.

RETURN VALUE

None.

LIBRARY

DCRTCP.LIB

sock_tick
Chapter 2: TCP/IP Engine 69

void sock_wait_closed(void * s, int seconds, int (*fptr)(), int*
status);

DESCRIPTION

This macro waits until a TCP connection is fully closed. Returns immediately for UDP

sockets. On an error, the macro jumps to a local, user-supplied sock_err label. If
fptr returns !0 the macro returns with the status word set to the value of fptr‘s return

value.

PARAMETERS

s Pointer to a socket.

seconds Number of seconds to wait before timing out. A value of zero indi-
cates the macro should never time-out. A good value to use is

sock_delay, a system variable set on configuration. Typically

sock_delay is about 20 seconds, but can be set to something else

in main().

fptr Function to call repeatedly while waiting. This is a user-supplied

function.

status Pointer to a status word.

RETURN VALUE

None.

LIBRARY

DCRTCP.LIB

SEE ALSO

sock_wait_established, sock_wait_input

sock_wait_closed
70 TCP/IP User’s Manual

void sock_wait_established(void* s, int seconds, int (*fptr)(),
int* status);

DESCRIPTION

This macro waits until a connection is established for the specified TCP socket, or aborts

if a time-out occurs. It returns immediately for UDP sockets. On an error, the macro

jumps to the local, user-supplied sock_err label. If fptr, a user-supplied function, re-
turns zero the macro returns.

PARAMETERS

s Pointer to a socket.

seconds Number of seconds to wait before timing out. A value of zero indi-
cates the macro should never time-out. A good value to use is

sock_delay, a system variable set on configuration. Typically

sock_delay is about 20 seconds, but can be set to something else

in main().

fptr Function to call repeatedly while waiting. This is a user-supplied

function.

status Pointer to a status word.

RETURN VALUE

None.

LIBRARY

DCRTCP.LIB

SEE ALSO

sock_wait_input, sock_wait_closed

sock_wait_established
Chapter 2: TCP/IP Engine 71

void sock_wait_input(void* s, int seconds, int (*fptr)(), int*
status);

DESCRIPTION

Waits until input exists for functions such as sock_read() and sock_gets(). As

described under sock_mode(), if in ASCII mode, sock_wait_input only returns
when a complete string exists or the buffer is full.

Under some conditions, (e.g., the remote or local host closes or resets the connection) this

macro jumps to a local, user-supplied sock_err label.

For sample programs, see the examples listed under tcp_open(), tcp_listen(),
and sock_read().

PARAMETERS

s Pointer to a socket.

seconds Number of seconds to wait before timing out. A value of zero indi-
cates the macro should never time-out. A good value to use is

sock_delay, a system variable set on configuration. Typically

sock_delay is about 20 seconds, but can be set to something else

in main().

fptr Function to call repeatedly while waiting.

status A pointer to the status word. If this parameter is NULL, no status

number will be available, but the macro will otherwise function nor-
mally. Typically the pointer will point to a local signed integer that
is used only for status. status may be tested to determine how the

socket was ended. A value of 1 means a proper close while a -1 val-
ue indicates a reset or abort.

RETURN VALUE

None.

LIBRARY

DCRTCP.LIB

SEE ALSO

sock_wait_established, sock_wait_closed, sock_mode

sock_wait_input
72 TCP/IP User’s Manual

int sock_write(void *s, byte *dp, int len);

DESCRIPTION

Writes up to len bytes from dp on socket s. This function busywaits until either the

buffer is completely written or a socket error occurs. If sock_yield() has been

called, the user-defined function that is passed to it will be called in a tight loop while

sock_write() is busywaiting.

For UDP, sock_write() will send one (or more) records. For TCP, the new data may

be transmitted if enough data is in the buffer or sufficient time has expired or the user has
explicitly used sock_flushnext() to indicate this data should be flushed immedi-
ately. In either case, there is no guarantee of acceptance at the other end.

PARAMETERS

s Pointer to a socket

dp Pointer to a buffer.

len Maximum number of bytes to write to the buffer.

RETURN VALUE

Number of bytes written or -1 on an error.

LIBRARY

DCRTCP.LIB

SEE ALSO

sock_read, sock_fastwrite, sock_fastread, sockerr,
sock_wait_input, sock_flush, sock_flushnext

sock_write
Chapter 2: TCP/IP Engine 73

int sock_yield(tcp_Socket *s, void (*fn)());

DESCRIPTION

This function, if called prior to one of the blocking functions, will cause fn, the user-
defined function that is passed in as the second parameter, to be called repeatedly while

the blocking function is in a busywait state.

PARAMETERS

s Pointer to a TCP socket.

fn User-defined function.

RETURN VALUE

0

LIBRARY

DCRTCP.LIB

void tcp_clearreserve(word port);

DESCRIPTION

This function causes the DCRTCP.LIB stack to handle a socket connection to the spec-
ified port normally. This undoes the action taken by tcp_reserveport().

PARAMETERS

port Port to use.

RETURN VALUE

None.

LIBRARY

DCRTCP.LIB

SEE ALSO

tcp_reserveport

sock_yield

tcp_clearreserve
74 TCP/IP User’s Manual

void tcp_config(char *name, char *value);

DESCRIPTION

Sets TCP/IP stack parameters at runtime. It should not be called with open sockets.

Additionally, MY_IP_ADDRESS can be overridden by sethostid(), and

MY_HOSTNAME can be overridden by sethostname().

PARAMETERS

name Setting to be changed.The possible parameters are:
MY_IP_ADDRESS: host IP address (use sethostid() instead)
MY_NETMASK
MY_GATEWAY: host’s default gateway
MY_NAMESERVER: host’s default nameserver
MY_HOSTNAME
MY_DOMAINNAME: host’s domain name (use setdomain-
name() instead)
MTU: maximum size of packets

value The value to assign to name.

RETURN VALUE

None

LIBRARY

DCRTCP.LIB

tcp_config
Chapter 2: TCP/IP Engine 75

int tcp_keepalive(tcp_Socket *s, long timeout);

DESCRIPTION

Enable or disable TCP keepalives on a specified socket. The socket must already be open.
Keepalives will then be sent after "timeout" seconds of inactivity. It is highly recommend-
ed to keep timeout as long as possible, to reduce the load on the network. Ideally, the tim-
eout should be no shorter than 2 hours. After the timeout is sent, and

KEEPALIVE_WAITTIME seconds pass, another keepalive will be sent, in case the first
was lost. This will be retried KEEPALIVE_NUMRETRYS times. Both of these macros

can be #defined at the top of your program, overriding the defaults of 60 seconds, and 4

retries.

Using keepalives is not a recommended procedure. Ideally, the application using the

socket should send its own keepalives. tcp_keepalive() is provided because telnet
and a few other network protocols do not have a method of sending keepalives at the ap-
plication level.

PARAMETERS

s Pointer to a socket.

timeout Period of inactivity, in seconds, before sending a keepalive or 0 to

turn off keepalives.

RETURN VALUE

0: Success;
1: Error

LIBRARY

DCRTCP.LIB

SEE ALSO

sock_fastread, sock_fastwrite, sock_write, sockerr, sock_wait_input

tcp_keepalive
76 TCP/IP User’s Manual

int tcp_listen(tcp_Socket *s, word lport, longword ina, word
port, int (*signal_handler), word timeout);

DESCRIPTION

This function tells DCRTCP.LIB that an incoming session for a particular port will be

accepted. After a call to tcp_listen(), the function sock_established() (or
the macro sock_wait_established) must be called to poll the connection until a

session is fully established.

It is possible for a connection to be opened, written to and closed between two calls to the

function sock_established(). To handle this case, call sock_bytesready()

or sock_dataready() to determine if there is data to be read from the buffer.

Multiple calls to tcp_listen() to the same local port (lport) are acceptable and

constitute the DCRTCP.LIB mechanism for supporting multiple incoming connections
to the same local port. Each time another host attempts to open a session on that particular
port, another one of the listens will be consumed until such time as all listens have be-
come established sessions and subsequent remote host attempts will receive a reset.

PARAMETERS

s Pointer to a socket.

lport Port to listen on (the local port number).

ina IP address of the remote host to accept connections from or 0

for all.

port Port to accept connections from or 0 for all.

signal_handler This function is called if the connection is either closed or re-
set. The parameter for signal_handler is the pointer to

a function which will be called when the socket is either
closed or reset. Some details for implementation of this ser-
vice have not been finalized, and it is recommended the user

insert a value of NULL for the present time.

timeout Number of seconds to wait before timing out in

sock_wait_established. Set to zero for no time-out.

RETURN VALUE

0: Error;
1: Success.

LIBRARY

DCRTCP.LIB

SEE ALSO

tcp_open

tcp_listen
Chapter 2: TCP/IP Engine 77

EXAMPLE USING TCP_LISTEN()

#define MY_IP_ADDRESS "10.10.6.100"
#define MY_NETMASK "255.255.255.0"
#memmap xmem
#use "dcrtcp.lib"

#define TELNET_PORT 23

static tcp_Socket *s;
char *userid;

telnets(int port) {
tcp_Socket telnetsock;
char buffer[512];
int status;
int len;
s = &telnetsock;
tcp_listen(s, port, 0L, 0, NULL, 0);

sock_wait_established(s, 0, NULL, &status);

puts("Receiving incoming connection");
sock_mode(s, TCP_MODE_ASCII);
sock_puts(s, "Welcome to a sample telnet server.");
sock_puts(s, "Each line you type will be printed on this"\

"screen once you hit return.");
/* other guy closes connection except if we timeout */
while (1) {

sock_wait_input(s , 0, NULL, &status);
sock_gets(s, buffer, 512);
puts(buffer);

}
sock_err:
switch (status) {

case 1 : /* foreign host closed */
puts("User closed session");
return;
case -1: /* timeout */
printf("\n\rConnection timed out!");
return;

}
}
main() {

sock_init();
telnets(TELNET_PORT);
exit(0);

}

78 TCP/IP User’s Manual

int tcp_open(void *s, word lport, longword ina, word port,
int (*signal_handler)());

DESCRIPTION

This function actively creates a session with another machine. After a call to

tcp_open(), the function sock_established() (or the macro

sock_wait_established) must be called to poll the connection until a session is

fully established.

It is possible for a connection to be opened, written to and closed between two calls to the

function sock_established(). To handle this case, call sock_bytesready()

or sock_dataready() to determine if there is data to be read from the buffer.

PARAMETERS

s Pointer to a socket.

lport Our port, zero for the next available 1025-65536. A few ap-
plications will require you to use a particular local port num-
ber, but most network applications let you use almost any port
with a certain set of restrictions. For example, FINGER or
TELNET clients can use any local port value, so pass the val-
ue of zero for lport and let DCRTCP.LIB pick one for you.

ina IP address to connect to.

port Port to connect to.

signal_handler This function is called if the connection is either closed or re-
set. The parameter for signal_handler is the pointer to

a function which will be called when the socket is either
closed or reset. Some details for implementation of this ser-
vice have not been finalized, and it is recommended the user

insert a value of NULL for the present time.

RETURN VALUE

0: Unable to resolve the remote computer's hardware address;
!0 otherwise.

LIBRARY

DCRTCP.LIB

SEE ALSO

tcp_listen

tcp_open
Chapter 2: TCP/IP Engine 79

EXAMPLE USING TCP_OPEN()

#define MY_IP_ADDRESS "10.10.6.100"
#define MY_NETMASK "255.255.255.0"
#memmap xmem

#use "dcrtcp.lib"

#define ADDRESS "10.10.6.19"
#define PORT "200"

main() {
word status;
word port;
longword host;
tcp_Socket tsock;

sock_init();

if (!(host = resolve(ADDRESS))) {
puts("Could not resolve host");
exit(3);

}
port = atoi(PORT);
printf("Attempting to open '%s' on port %u\n\r", ADDRESS, port);
if (!tcp_open(&tsock, 0, host, port , NULL)) {

puts("Unable to open TCP session");
exit(3);

}

printf("Waiting a maximum of %u seconds for connection"\
" to be established\n\r", sock_delay);

sock_wait_established(&tsock, sock_delay, NULL, &status);
puts("Socket is established");
sock_close(&tsock);
sock_wait_closed(&tsock, sock_delay, NULL, &status);

sock_err:
switch (status) {

case 1 :
puts("Connection closed normally");
break;
case 2 :
puts("Problem occurred...");
sockerr(&tsock);
break;

}
exit((status == 1) ? 0 : 1);

}

80 TCP/IP User’s Manual

void tcp_reserveport(word port);

DESCRIPTION

This function allows a connection to be established even if there is not yet a socket avail-
able. This is done by setting a parameter in the TCP header during the connection setup

phase that indicates 0 bytes of data can be received at the present time. The requesting

end of the connection will wait until the TCP header parameter indicates that data will be

accepted.

The 2MSL waiting period for closing a socket is avoided by using this function.

The penalty of slower connection times on a controller that is processing a large number
of connections is offset by allowing the program to have less sockets and consequently

less RAM usage.

PARAMETERS

port Port to use.

RETURN VALUE

None.

LIBRARY

DCRTCP.LIB

SEE ALSO

tcp_clearreserve

/* the following are the results from running 'test sunee 25'

Attempting to open 'sunee' on port 25
Waiting a maximum of 10 seconds for connection to be established
Socket is established
Connection closed normally
*/

tcp_reserveport
Chapter 2: TCP/IP Engine 81

int tcp_tick(void *s);

DESCRIPTION

This function is a single kernel routine designed to quickly process packets and return as
soon as possible. tcp_tick() performs processing on all sockets upon each invoca-
tion: checking for new packets, processing those packets, and performing retransmissions
on lost data. On most other computer systems and other kernels, performing these re-
quired operations in the background is often done by a task switch. DCRTCP.LIB does
not use a tasker for its basic operation, although it can adopt one for the user-level servic-
es.

Although you may ignore the returned value of tcp_tick(), it is the easiest method

to determine the status of the given socket.

PARAMETERS

s Pointer to a socket. If NULL, the returned value is always 0.

RETURN VALUE

0: Connection reset or closed by other host or NULL was passed in.
!0: Connection is fine.

LIBRARY

DCRTCP.LIB

SEE ALSO

tcp_open, sock_close, sock_abort, sock_tick,
sock_wait_established

tcp_tick
82 TCP/IP User’s Manual

int udp_open(udp_Socket *s, word lport, longword ina, word
port, int (*datahandler)());

DESCRIPTION

UDP sockets are used for connectionless data transfers. Despite the connectionless na-
ture, which is protocol-dependent, DCRTCP.LIB imposes a socket mechanism that re-
quires a destination address. As described under the UDP datagram service, you may

elect to use datagram-oriented features.

If the remote host is set to -1, all packets received by this computer and destined for
lport will return data with the various read statements. Write statements to this socket
will cause broadcasts. This mechanism is suitable for broadcast information such as RIP

packets. If the remote host is set to 0, the next packet received by DCRTCP.LIB destined

for this machine's UDP port number, lport, will complete the socket.

If the remote host is set to a particular address, either host may initiate traffic. Multiple

calls to udp_open() with ina set to zero is a useful way of accepting multiple incom-
ing sessions.

udp_open() will return 0 if the socket cannot be opened. A typical reason would be

that the host's physical address cannot be resolved using ARP or normal routing mecha-
nisms. When an error occurs, you might try the PING.EXE application to test the acces-
sibility of the other computer.

Although multiple calls to udp_open() may normally be made with the same lport

number, only one udp_open() should be made on a particular lport if the ina is set
to -1. Essentially, the broadcast and nonbroadcast protocols cannot co-exist.

PARAMETERS

s Pointer to a UDP socket.

lport Local port

ina Acceptable remote IP, or -1 for broadcast.

port Acceptable remote port, or -1 for broadcast.

data_handler Function to call when data is received.

RETURN VALUE

0 if destination hardware address cannot be resolved; !0 otherwise.

LIBRARY

DCRTCP.LIB

SEE ALSO

sock_recv, sock_recv_init, sock_recv_from

udp_open
Chapter 2: TCP/IP Engine 83

 EXAMPLE OF USING UDP_OPEN()

#define MY_IP_ADDRESS "10.10.6.100"
#define MY_NETMASK "255.255.255.0"
#memmap xmem
#use "dcrtcp.lib"

#define ADDRESS "10.10.6.19"
#define PORT "200"

main() {
word status, port;
longword host;
udp_Socket usock;

sock_init();
if (!(host = resolve(ADDRESS))) {

puts("Could not resolve host");
exit(3);

}
port = atoi(PORT);
printf("Attempting to open '%s' on port %u\n\r", ADDRESS, port);
if (!udp_open(&usock, 0, host, port , NULL)) {

puts("Unable to open UDP session");
exit(3);

}
/* udp, no need to wait for connection unless expecting incoming

session. wait_sock_established would return immediately */

puts("Socket is established");

/* note, no data has been sent, no connection established, the
other guy doesn't even know we are interested */

sock_close(&usock);

sock_err:
switch (status) {

case 1 :
puts("Connection closed normally");
break;
case 2 :
puts("Problem occurred...");
sockerr(&usock);
break;

}
exit((status == 1) ? 0 : 1);

}
/* the results of running 'TEST sunee 25' are :

Attempting to open 'sunee' on port 25
Socket is established
Connection closed normally */
84 TCP/IP User’s Manual

S lookups. It defaults to 4. If libraries such as HTTP.LIB or FTP_SERVER.LIB

d, you must provide enough sockets in MAX_SOCKETS for them also.

acro is the initial value for the domain portion of the controller’s address. At runt- it can be overwritten by tcp_config() and setdomainname().

This macro gives the default value for the controllers default gateway. At runtime, it can

be overwritten by tcp_config().

This macro is the default IP address for the controller. At runtime, it can be overwritten sethostid().

This macro is the default value for the primary name server. At runtime, it can be over-
written by tcp_config().

This macro is the default netmask for the controller. At runtime, it can be overwritten by .
2.8 Macros

This macro disables DNS lookup. This prevents a UDP socket for DNS from being allo-
cated, thus saving memory. Users may still call resolve() with an IP address.

This macro defines the number of sockets that will be allocated, not including the socket di DN
are use

This m

DISABLE_DNS

MAX_SOCKETS

MY_DOMAIN

MY_GATEWAY

MY_IP_ADDRESS

MY_NAMESERVER

MY_NETMASK
Chapter 2: TCP/IP Engine 85

This macro determines the size of the socket buffers. A TCP socket will have two buffers

of size SOCK_BUF_SIZE/2 for send and receive. A UDP socket will have a single sock-
et of size SOCK_BUF_SIZE. Both types of sockets take the same total amount of buffer
space.

This use of this macro is deprecated in Dynamic C version 6.57 and higher; it has been

replaced by SOCK_BUF_SIZE. It will work slightly differently in these later versions:
the buffer for the UDP socket will be tcp_MaxBufSize * 2, which is twice as large

as before. This macro is being kept for backwards compatibility.

In Dynamic C versions 6.56 and earlier, this macro determines the size of the input and

output buffers for TCP/IP sockets. The sizeof(tcp_Socket) will be about 200

bytes more than double this value. The optimum value for local Ethernet connections is

greater than the MSS (1460). You may want to lower this value to reduce RAM usage.

#define tcp_MaxBufSize 600
#use "dcrtcp.lib"

SOCK_BUF_SIZE

tcp_MaxBufSize
86 TCP/IP User’s Manual

Server Utility Library 3

The server utility library, ZSERVER.LIB, contains the structures, functions, and constants to

allow HTTP (Hypertext Transfer Protocol) and FTP (File Transfer Protocol) servers to share data

and user authentication information while running concurrently.

HTML form functionality is included in ZSERVER.LIB.

3.1 Data Structures for Zserver.lib
There are several data structures in this library of interest to developers of HTTP or FTP servers.

3.1.1 ServerSpec Structure
A file transfer server has access to a list of objects: files, functions and variables. This list is

defined as a global array in ZSERVER.LIB.

ServerSpec server_spec[SSPEC_MAXSPEC];

Throughout this manual, this array will be called the TCP/IP servers’ object list.

3.1.2 ServerAuth Structure
ZSERVER.LIB also defines a global array that is a list of user name/password pairs.

ServerAuth server_auth[SAUTH_MAXUSERS];

Throughout this manual, this array will be called the TCP/IP users list.

3.1.3 FormVar Structure

An array of FormVars represent the variables in an HTML form. The developer will
declare an array of these structures, with the size needed to hold all variables for a particu-
lar form. The FormVar structure contains:

•A server_spec index that references the variable to be modified. This is the loca-
tion of the form variable in the TCP/IP servers’ object list.

•An integrity-checking function pointer that ensures that the variables are set to valid
values.

•High and low values (for numerical types).

•Length (for the string type, and for the maximum length of the string representations
of values).

•A Pointer to an array of values (for when the value must be one of a specific, and
probably short, list).

The developer can specify whether she wants the variable to be set through a text entry

field or a pull-down menu, and if the variable should be considered read-only.
Chapter 3: Server Utility Library 87

This FormVar array is placed in a ServerSpec structure using the function

sspec_addform. ServerSpec entries that represent variables will be added to the

FormVar array using sspec_addfv. Properties (e.g., the integrity-checking properties)
for these FormVar entries can be set with various other functions. Hence, there is a level
of indirection between the variables in the forms and the actual variables themselves. This

allows the same variable to be included in multiple forms with different ranges for each

form, and perhaps be read-only in one form and modifiable in another.

3.2 Constants Used in Zserver.lib
The constants in this section are values assigned to the fields of the structures ServerSpec and

ServerAuth. They are used in the functions described in Section 3.4, some as function parame-
ters and some as return values.

3.2.1 ServerSpec Type Field
This field describes the objects in the TCP/IP servers’ object list.

SSPEC_ERROR // Error condition
SSPEC_FILE // Data resides in a file
SSPEC_FSFILE // The data resides in a file system file
SSPEC_FORM // Set of modifiable variables
SSPEC_FUNCTION // Data is a function
SSPEC_ROOTFILE // Data resides in root memory
SSPEC_UNUSED
SSPEC_VARIABLE // Data is a variable (for HTTP)
SSPEC_XMEMFILE // Data resides in extended memory
SSPEC_ROOTVAR // Data is a variable in root memory
SSPEC_XMEMVAR // Data is a variable in xmem

3.2.2 ServerSpec Vartype Field
If the object is a variable, then this field will tell you what type of variable it is:

INT8, INT16, INT32, PTR16, FLOAT32

3.2.3 Servermask field
The type of server (HTTP and/or FTP) that has access to a particular data structure is determined

by the servermask field. Both ServerSpec and ServerAuth have this field. It must be set
when adding the structure to its array. The default is that no server has access. servermask can

be one of the following, or any bitwise inclusive OR of these values:

SERVER_FTP
SERVER_HTTP
SERVER_USER // for use with the flash file system

3.2.4 Configurable Constants
These constants define system limits on various data lengths and array sizes.
88 TCP/IP User’s Manual

SSPEC_MAXNAME

Maximum length of strings in a ServerSpec structure entry. Default is 20.

SSPEC_MAXSPEC

Sets the maximum number of entries in the global array, server_spec. HTTP_MAXRAMSPEC

(from HTTP.LIB) should override SSPEC_MAXSPEC. If you attempt to use both you may not
get the desired results, therefore, the use of HTTP_MAXRAMSPEC should be deprecated. If both

HTTP_MAXRAMSPEC and SSPEC_MAXSPEC are not defined, SSPEC_MAXSPEC defaults to 10.

SSPEC_XMEMVARLEN

Defines the size of the stack-allocated buffer used by sspec_readvariable() when reading a

variable in xmem. It defaults to 20.

SAUTH_MAXNAME

Maximum length of strings in ServerAuth structure. Default is 20.

SAUTH_MAXUSERS

Maximum number of users for a TCP/IP users list. Default is 10.

3.3 HTML Forms
Defining FORM_ERROR_BUF is required to use the HTML form functionality in Zserver.lib.
The value assigned to this macro is the number of bytes to reserve in root memory for the buffer used

for form processing. This buffer must be large enough to hold the name and value for each variable,
plus four bytes for each variable.

An array of type FormVar must be declared to hold information about the form variables. Be sure to

allocate enough entries in the array to hold all of the variables that will go in the form. If more forms

are needed, then more of these arrays can be allocated. Please see Section 4.3.4 on page 152 for an

example program.
Chapter 3: Server Utility Library 89

3.4 Functions

int sauth_adduser(char* username, char* password, word
servermask);

DESCRIPTION

Adds a user to the TCP/IP users list.

PARAMETERS

username Name of the user.

password Password of the user.

servermask Bitmask representing valid servers (e.g. SERVER_HTTP,
SERVER_FTP).

RETURN VALUE

-1: Failure;
>=0: Success; index in TCP/IP users list (id passed to sauth_getusername()).

LIBRARY

ZSERVER.LIB

SEE ALSO

sauth_authenticate, sauth_getwriteaccess,
sauth_setwriteaccess

sauth_adduser
90 TCP/IP User’s Manual

int sauth_authenticate(char* username, char* password, word
server);

DESCRIPTION

Authenticate a user.

PARAMETERS

username Name of user.

password Password for the user.

server The server for which this function is authenticating (e.g.
SERVER_HTTP, SERVER_FTP).

RETURN VALUE

-1: Failure, user not valid.
>=0: Success, array index of the ServerAuth structure for authenticated user.

LIBRARY

ZSERVER.LIB

SEE ALSO

sauth_adduser

sauth_authenticate
Chapter 3: Server Utility Library 91

char* sauth_getusername(int uid);

DESCRIPTION

Gets a pointer to username from the ServerAuth structure.

PARAMETERS

uid The user’s id, i.e., the array index in the TCP/IP users list.

RETURN VALUE

NULL: Failure;
!NULL: Success, pointer to the username string on success.

LIBRARY

ZSERVER.LIB

See also
sspec_getusername

int sauth_getwriteaccess(int sauth);

DESCRIPTION

Checks whether or not a user has write access.

PARAMETERS

sauth Index of the user in the TCP/IP users list.

RETURN VALUE

0: User does not have write access;
1: User has write access

-1: Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sauth_setwriteaccess

sauth_getusername

sauth_getwriteaccess
92 TCP/IP User’s Manual

int sauth_setwriteaccess(int sauth, int writeaccess);

DESCRIPTION

Sets the write accessibility of a user.

PARAMETERS

sauth Index of the user in the TCP/IP users list.

writeaccess Set to 1 to give write access, 0 to deny write access.

RETURN VALUE

0: Success
-1: Failure

LIBRARY

ZSERVER.LIB

SEE ALSO

sauth_getwriteaccess

sauth_setwriteaccess
Chapter 3: Server Utility Library 93

int sspec_addform(char* name, FormVar* form, int formsize, word
servermask);

DESCRIPTION

Adds a form (set of modifiable variables) to the TCP/IP servers’object list. This function

is currently only useful for the HTTP server.

PARAMETERS

name Name of the new form.

form Pointer to the form array. This is a user-defined array to hold infor-
mation about form variables.

formsize Size of the form array

servermask Bitmask representing valid servers (currently only useful with

SERVER_HTTP)

RETURN VALUE

>=0: Success; location of form in TCP/IP servers’ object list;
-1: Failed to add form

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_addfsfile, sspec_addfunction, sspec_addrootfile,
sspec_addvariable, sspec_addxmemvar, sspec_addxmemfile
sspec_aliasspec, sspec_addfv

sspec_addform
94 TCP/IP User’s Manual

int sspec_addfsfile(char* name, byte filenum, word servermask);

DESCRIPTION

Adds a file located in the file system to the TCP/IP servers’ object list.

PARAMETERS

name Name of the new
Chapter 3: Server Utility Library 95

int sspec_addfunction(char* name, void (*fptr)(), word
servermask);

DESCRIPTION

Adds a function to the list of objects recognized by the server. This function is currently

only useful for HTTP servers.

PARAMETERS

name Name of the function.

(*ftpr)() Pointer to the function.

servermask Bitmask representing servers for which this function will be valid
(currently only useful with SERVER_HTTP).

RETURN VALUE

-1: Failure;
>=0: Success, location of the function in the TCP/IP servers’ object list.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_addform, sspec_addfsfile, sspec_addrootfile,
sspec_addvariable, sspec_addxmemfile, sspec_aliasspec

int sspec_addfv(int form, int var);

DESCRIPTION

Adds a variable to a form.

PARAMETERS

form Index of the form in the TCP/IP servers’ object list.

var Index of the variable in the TCP/IP servers’ object list.

RETURN VALUE

-1: Failure;
>=0: Success; next available index into the FormVar array.

LIBRARY

ZSERVER.LIB

sspec_addfunction

sspec_addfv
96 TCP/IP User’s Manual

int sspec_addrootfile(char* name, char* fileloc, int len, word
servermask);

DESCRIPTION

Adds a file that is located in root memory to the TCP/IP servers’ object list.

PARAMETERS

name Name of the new file.

fileloc Pointer to the beginning of the file.

len Length of the file in bytes.

servermask Bitmask representing servers for which this entry will be valid (e.g.
SERVER_HTTP, SERVER_FTP).

RETURN VALUE

-1: Failure;
>=0: Success, location of the file in the TCP/IP servers’ object list.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_addfsfile, sspec_addxmemfile, sspec_addvariable,
sspec_addfunction sspec_addform, sspec_aliasspec

sspec_addrootfile
Chapter 3: Server Utility Library 97

int sspec_addvariable(char* name, void* variable, word type,
char* format, word servermask);

DESCRIPTION

Adds a variable to the TCP/IP servers’ object list. This function is currently only useful
for the HTTP server.

PARAMETERS

name Name of the new variable.

variable Address of actual variable.

type Type of the variable (e.g., INT8, INT16, PTR16, etc.).

format Output format of the variable.

servermask Bitmask representing servers for which this function will be valid

(currently only useful with SERVER_HTTP).

RETURN VALUE

-1: Failure;
>=0: Success, the location of the variable in the TCP/IP servers’ object list.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_addfsfile, sspec_addrootfile, sspec_addxmemfile,
sspec_addfunction sspec_addform, sspec_aliasspec

sspec_addvariable
98 TCP/IP User’s Manual

int sspec_addxmemfile(char* name, long fileloc, word
servermask);

DESCRIPTION

Adds a file, located in extended memory, to the TCP/IP servers’ object list.

PARAMETERS

name Name of the new file.

fileloc Location of the beginning of the file. The first 4 bytes of the file

must represent the length of the file (#ximport does this automat-
ically).

servermask Bitmask representing servers for which this entry will be valid (e.g.
SERVER_HTTP, SERVER_FTP).

RETURN VALUE

-1: Failure;
>=0: Success, the location of the file in the TCP/IP servers’ object list.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_addfsfile, sspec_addrootfile, sspec_addvariable,
sspec_addxmemvar, sspec_addfunction, sspec_addform,
sspec_aliasspec

sspec_addxmemfile
Chapter 3: Server Utility Library 99

int sspec_addxmemvar(char* name, long variable, word type,
char* format, word servermask);

DESCRIPTION

Add a variable located in extended memory to the TCP/IP servers’ object list. Currently,
this function is useful only for the HTTP server.

PARAMETERS

name Name of the new variable.

variable Address of the variable in extended memory.

type Variable type (e.g., INT8, INT16, PTR16, etc.).

format Output format of the variable.

servermask Bitmask representing valid servers (currently only useful with

SERVER_HTTP).

RETURN VALUE

-1: Failure;
>=0: Success, the location of the variable in the TCP/IP servers’ object list.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_addfsfile, sspec_addrootfile, sspec_addvariable,
sspec_addfunction, sspec_addform, sspec_addxmemfile,
sspec_aliasspec

sspec_addxmemvar
100 TCP/IP User’s Manual

int sspec_aliasspec(int sspec, char* name);

DESCRIPTION

Creates an alias to an existing object in the TCP/IP servers’ object list. Please note, this

is NOT a deep copy. That is, any file, variable, or form that the alias references will be

the same copy of the file, variable, or form that already exists in the TCP/IP servers’ ob-
ject list. This should be called only when the original entry has been completely set up.

PARAMETERS

sspec Location of the object in the TCP/IP servers’ object list that will be

aliased.

name Name field of the ServerSpec structure that will be aliased.

RETURN VALUE

-1: Failure;
>=0: Success; return location of alias, i.e., new index

LIBRARY

ZSERVER.LIB

See also
sspec_addform, sspec_addfsfile, sspec_addfunction,
sspec_addrootfile, sspec_addvariable, sspec_addxmemfile

sspec_aliasspec
Chapter 3: Server Utility Library 101

int sspec_checkaccess(int sspec, int uid);

DESCRIPTION

This function checks whether or not the specified user has permission to access the spec-
ified object in the TCP/IP servers’ object list.

PARAMETERS

sspec Location of object in TCP/IP servers’ object list.

uid Location of the user in the TCP/IP users list.

RETURN VALUE

0: User does not have access;
1: User has access

-1: Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_needsauthentication

int sspec_findfv(int form, char* varname);

DESCRIPTION

Finds the index in the array of type FormVar of a form variable in a given form.

PARAMETERS

form Location of the form in the TCP/IP servers’ object list.

varname Name of the variable to find.

RETURN VALUE

-1: Failure;
>=0: Success; the index of the form variable in the array of type FormVar.

LIBRARY

ZSERVER.LIB

sspec_checkaccess

sspec_findfv
102 TCP/IP User’s Manual

int sspec_findname(char* name, word server);

DESCRIPTION

Finds the location of the object associated with name and returns the location (index into

the server_spec array) of the object if the server is allowed access to it. (Access is

determined by the servermask field in the ServerSpec structure for the object.)

PARAMETERS

name Name to search for in the TCP/IP servers’ object list.

server The server making the request (e.g. SERVER_HTTP).

RETURN VALUE

-1: Failure;
>=0: Success, location of the object in the TCP/IP servers’ object list.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_findnextfile

sspec_findname
Chapter 3: Server Utility Library 103

int sspec_findnextfile(int start, word server);

DESCRIPTION

Finds the first ServerSpec structure in the array, at or following the structure indexed

by start, that is associated with a file and that is accessible by the server.

PARAMETERS

start The array index at which to begin the search.

server The server making the request (e.g. SERVER_HTTP).

RETURN VALUE

-1: Failure;
>=0: Success, index of requested ServerSpec structure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_findname

long sspec_getfileloc(int sspec);

DESCRIPTION

Gets the location in memory or in the file system of a file represented by a ServerSpec

structure. Note that the location of the file is returned as a long; the return value should

be cast to the appropriate type (char* for a root file, FileNum for the file system) by

the user. sspec_getfiletype() can be used to find the file type.

PARAMETERS

sspec Index into the array of ServerSpec structures.

RETURN VALUE

>=0: Success, location of the file;
-1: Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_getfiletype, sspec_getlength

sspec_findnextfile

sspec_getfileloc
104 TCP/IP User’s Manual

word sspec_getfiletype(int sspec);

DESCRIPTION

Gets the type of a file represented by a ServerSpec structure.

PARAMETERS

sspec Index into the array of ServerSpec structures.

RETURN VALUE

SSPEC_ERROR: Failure;
!=SSPEC_ERROR: Success, the type of file.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_getfileloc, sspec_gettype

char* sspec_getformtitle(int form);

DESCRIPTION

Gets the title for an automatically generated form.

PARAMETERS

form server_spec index of the form.

RETURN VALUE

NULL on failure;
!NULL on success, title string.

LIBRARY

ZSERVER.LIB

sspec_getfiletype

sspec_getformtitle
Chapter 3: Server Utility Library 105

void* sspec_getfunction(int sspec);

DESCRIPTION

Accesses the array of ServerSpec structures to get a pointer to the requested function.

PARAMETERS

sspec Index into the array of ServerSpec structures.

RETURN VALUE

NULL on failure;
!NULL on success, pointer to requested function.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_addfunction

sspec_getfunction
106 TCP/IP User’s Manual

char* sspec_getfvdesc(int form, int var);

DESCRIPTION

 Gets the description of a variable that is displayed in the HTML form table.

PARAMETERS

form server_spec index of the form.

var Index (into the FormVar array) of the variable.

RETURN VALUE

NULL on failure;
!NULL on success, description string.

LIBRARY

ZSERVER.LIB

sspec_getfvdesc
Chapter 3: Server Utility Library 107

int sspec_getfventrytype(int form, int var);

DESCRIPTION

Gets the type of form entry element that should be used for the given variable.

PARAMETERS

form server_spec index of the form.

var Index (into the FormVar array) of the variable.

RETURN VALUE

-1: Failure;
Type of form entry element on success:

HTML_FORM_TEXT is a text box.
HTML_FORM_PULLDOWN is a pull-down menu.

LIBRARY

ZSERVER.LIB

int sspec_getfvlen(int form, int var);

DESCRIPTION

Gets the length of a form variable (the maximum length of the string representation of the

variable).

PARAMETERS

form server_spec index of the form.

var Index (into the FormVar array) of the variable.

RETURN VALUE

-1: Failure;
>0: Success, length of the variable.

LIBRARY

ZSERVER.LIB

sspec_getfventrytype

sspec_getfvlen
108 TCP/IP User’s Manual

char* sspec_getfvname(int form, int var);

DESCRIPTION

 Gets the name of a variable that is displayed in the HTML form table.

PARAMETERS

form server_spec index of the form.

var Index into the array of FormVar structures of the variable.

RETURN VALUE

NULL on failure;
!NULL, name of the form variable.

LIBRARY

ZSERVER.LIB

int sspec_getfvnum(int form);

DESCRIPTION

Gets the number of variables in a form.

PARAMETERS

form server_spec index of the form.

RETURN VALUE

-1: Failure;
>=0: Success, number of form variables.

LIBRARY

ZSERVER.LIB

sspec_getfvname

sspec_getfvnum
Chapter 3: Server Utility Library 109

char* sspec_getfvopt(int form, int var, int option);

DESCRIPTION

Gets the numbered option (starting from 0) of the form variable. This function is only val-
id if the form variable has the option list set.

PARAMETERS

form server_spec index of the form.

var Index into the array of FormVar structures of the variable.

option Index of the form variable option.

RETURN VALUE

NULL on failure;
!NULL on success, form variable option.

LIBRARY

ZSERVER.LIB

int sspec_getfvoptlistlen(int form, int var);

DESCRIPTION

Gets the length of the options list of the form variable. This function is only valid if the

form variable has the option list set.

PARAMETERS

form server_spec index of the form.

var Index (into the FormVar array) of the variable.

RETURN VALUE

-1: Failure;
>0: Success, length of the options list.

LIBRARY

ZSERVER.LIB

sspec_getfvopt

sspec_getfvoptlistlen
110 TCP/IP User’s Manual

int sspec_getfvreadonly(int form, int var);

DESCRIPTION

Checks if a form variable is read-only.

PARAMETERS

form server_spec index of the form.

var Index (into the FormVar array) of the variable.

RETURN VALUE

0: Read-only;
1: Not read-only;

-1: Failure.

LIBRARY

ZSERVER.LIB

int sspec_getfvspec(int form, int var);

DESCRIPTION

Gets the server_spec index of a variable in a form.

PARAMETERS

form server_spec index of the form.

var Index into the array of FormVar structures of the variable.

RETURN VALUE

-1: Failure;
>=0: Success, location of the form variable in the TCP/IP servers’ object list.

LIBRARY

ZSERVER.LIB

sspec_getfvreadonly

sspec_getfvspec
Chapter 3: Server Utility Library 111

long sspec_getlength(int sspec);

DESCRIPTION

Gets the length of the file associated with the specified ServerSpec structure.

PARAMETERS

sspec Location of file in TCP/IP servers’ object list.

RETURN VALUE

-1: Failure;
>=0: Success, length of the file in bytes.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_readfile, sspec_getfileloc

char* sspec_getname(int sspec);

DESCRIPTION

Accesses the array of ServerSpec structures and returns a pointer to the object’s name.

PARAMETERS

sspec Location of object in TCP/IP servers’ object list.

RETURN VALUE

NULL: Failure;
!NULL: Success, pointer to name string.

LIBRARY

ZSERVER.LIB

sspec_getlength

sspec_getname
112 TCP/IP User’s Manual

char* sspec_getrealm(int sspec);

DESCRIPTION

Returns the realm for the object.

PARAMETERS

sspec Location of the object in the TCP/IP servers’ object list.

RETURN VALUE

NULL: Failure;
!NULL: Success, pointer to the realm string.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_setrealm

word sspec_gettype(int sspec);

DESCRIPTION

Gets the type field of a ServerSpec structure.

PARAMETERS

sspec Location of the object in the TCP/IP servers’ object list.

RETURN VALUE

SSPEC_ERROR: Failure;
type field: Success (See “Constants Used in Zserver.lib” on page 88). For files and vari-
ables, it returns the generic type SSPEC_FILE or SSPEC_VARIABLE, respectively.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_getfiletype, sspec_getvartype

sspec_getrealm

sspec_gettype
Chapter 3: Server Utility Library 113

char* sspec_getusername(int sspec);

DESCRIPTION

Gets the username field of a ServerAuth structure.

PARAMETERS

sspec Location of user in TCP/IP users list.

RETURN VALUE

NULL: Failure;
!NULL: Success, pointer to username.

LIBRARY

ZSERVER.LIB

SEE ALSO

sauth_adduser, sspec_setuser

void* sspec_getvaraddr(int sspec);

DESCRIPTION

Returns a pointer to the requested variable in the TCP/IP servers’ object list.

PARAMETERS

sspec Location of the variable in the TCP/IP servers’ object list.

RETURN VALUE

NULL on failure;
!NULL on success, pointer to variable.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_readvariable

sspec_getusername

sspec_getvaraddr
114 TCP/IP User’s Manual

o r d s s p e 3 4
 / F n d (i n t s s p e c) ;

DESCRIPTIO N318F5

1

Tf
10.92

0

0

10.92

144

612.12

Tm
-0.0052

Tc
[(Ret)9.1(u)0.3(rns)]TJ
/300/F

(on(s0.1758

0

TD
-0.08j
/F8

1

Tf
0.3297

0

TD
0.0044

TTD
0

Tc
(

)Tj
/4Tj
/F0

th2

Tm
-e0.1758

0

TD
-0.0044

Tc
[(vari)9.9(abl)9.9(e)]TJ
/T9

1

Tf
3.1648

0

TD
0

f
0)2.)10.0.1758

0

TD
-0.0692

Tc
(of)Tj
/T9

1

Tf
0.8132

0

word sspec_getvarkind(int sspec);

DESCRIPTION

Returns the kind of variable represented by sspec (INT8, INT16, INT32, FLOAT32,
or PTR16).

PARAMETERS

sspec Location of the variable in the TCP/IP servers’ object list.

RETURN VALUE

!=0: Kind of variable;
0: Failure.

LIBRARY

ZSERVER.LIB

SEE w

TD
0

Tc
(

)Tj
/F5

1

Tf
0.2418

0

TD
-0.0044

Tc
(the)Tj
/T9

1

Tf
1.1978

0

TD
0

Tc
(

)Tj
/F5

1

Tf
0.2418

0

TD
-0.044

Tc
[(TC)12.1(P)10.9(/)18.7(I)7

s �
Chapter 3: Server Utility Library 115

int sspec_needsauthentication(int sspec);

DESCRIPTION

Checks if an object in the TCP/IP servers’ object list needs user authentication to permit
access. There is a field in the ServerSpec structure that is an index into the array of
ServerAuth structures (list of valid users). If this field has a value, access to the object
is limited to the one user specified.

PARAMETERS

sspec Index into the array of ServerSpec structures.

RETURN VALUE

0: Does not need authentication;
1: Does need authentication;

-1: Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_getrealm

sspec_needsauthentication
116 TCP/IP User’s Manual

int sspec_readfile(int sspec, char* buffer, long offset, int
len);

DESCRIPTION

Read a file represented by the sspec index into buffer, starting at offset, and only

copying len bytes. For xmem files, this function automatically skips the first 4 bytes.
Hence, an offset of 0 marks the beginning of the file contents, not the file length.

PARAMETERS

sspec Index into the array of ServerSpec structures.

buffer The buffer to put the file contents into.

offset The offset from the start of the file, in bytes, at which copying

should begin.

len The number of bytes to copy.

RETURN VALUE

-1: Failure;
>=0: Success, number of bytes copied.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_getlength, sspec_getfileloc

sspec_readfile
Chapter 3: Server Utility Library 117

int sspec_readvariable(int sspec, char* buffer);

DESCRIPTION

Formats the variable associated with the specified ServerSpec structure, and puts a

NULL-terminated string representation of it in buffer. The macro

SSPEC_XMEMVARLEN (default is 20) defines the size of the stack-allocated buffer
when reading a variable in xmem.

PARAMETERS

sspec Index into the array of ServerSpec structures.

buffer The buffer in which to put the variable.

RETURN VALUE

0: Success;
-1: Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_getvaraddr

int sspec_remove(int sspec);

DESCRIPTION

Removes an object from the TCP/IP servers’ object list.

PARAMETERS

sspec Index into the array of ServerSpec structures.

RETURN VALUE

0: Success
-1: Failure (i.e. the index is already unused).

LIBRARY

ZSERVER.LIB

sspec_readvariable

sspec_remove
118 TCP/IP User’s Manual

int sspec_restore(void);

DESCRIPTION

Restores the TCP/IP servers’ object list and the TCP/IP users list (and some user-speci-
fied data if set up with sspec_setsavedata()) from the file system. This does not
restore the actual files and variables, but only the structures that reference them. If the

files are stored in flash, then the references will still be valid. Files in volatile RAM and

variables must be rebuilt through other means.

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_save, sspec_setsavedata

int sspec_save(void);

DESCRIPTION

Saves the servers’ object list and server authorization list (along with some user-specified

data if set up with sspec_setsavedata()) to the file system. This does not save the

actual files and variables, but only the structures that reference them. If the files are stored

in flash, then the references will still be valid. Files in volatile RAM and variables must
be rebuilt through other means.

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_restore, sspec_setsavedata

sspec_restore

sspec_save
Chapter 3: Server Utility Library 119

int sspec_setformepilog(int form, int function);

DESCRIPTION

Sets the user-specified function that will be called when the form has been successfully

submitted. This function can, for example, execute a cgi_redirectto to redirect to

a specific page. It should accept "HttpState* state" as an argument, return 0 when it is not
finished, and 1 when it is finished (i.e., behave like a normal CGI function).

PARAMETERS

form Index into the array of ServerSpec structures.

function Index into the array of ServerSpec structures. This is the return

value of the function sspec_addfunction().

RETURN VALUE

0 : Success.
-1 : Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_addfunction

sspec_setformepilog
120 TCP/IP User’s Manual

Chapter 3: Server

int sspec_setformprolog(int form, int function);

DESCRIPTION

Allows a user-specified function to be called just before form variables are updated. This
is useful for implementing locking on the form variables (which can then be unlocked in

the epilog function), so that other code will not update the variables during form pro-
cessing. The user-specified function should accept "HttpState* state" as an argument,
return 0 when it is not finished, and 1 when it is finished (i.e., behave like a normal CGI
function).

PARAMETERS

form Index into the array of ServerSpec structures.

function Index into the array of ServerSpec structures. This is the return

value of sspec_addfunction().

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_addfunction

sspec_setformprolog
122 TCP/IP User’s Manual

int sspec_setformtitle(int form, char* title);

DESCRIPTION

Sets the title for an automatically generated form.

PARAMETERS

form server_spec index of the form.

title Title of the HTML page.

RETURN VALUE

0: Success
-1: Failure;

LIBRARY

ZSERVER.LIB

sspec_setformtitle
Chapter 3: Server Utility Library 123

int sspec_setfvcheck(int form, int var, int (*varcheck)());

DESCRIPTION

Sets a function that can be used to check the integrity of a variable. The function should

return 0 if there is no error, or !0 if there is an error.

PARAMETERS

form server_spec index of the form.

var Index (into the FormVar array) of the variable.

varcheck Pointer to integrity-checking function.

RETURN VALUE

>0: Success
-1: Failure

LIBRARY

ZSERVER.LIB

sspec_setfvcheck
124 TCP/IP User’s Manual

int sspec_setfvdesc(int form, int var, char* desc);

DESCRIPTION

Sets the description of a variable that is displayed in the HTML form table.

PARAMETERS

form server_spec index of the form.

var Index (into the FormVar array) of the variable.

desc Description of the variable. This text will display on the html page.

RETURN VALUE

0: Success
-1: Failure

LIBRARY

ZSERVER.LIB

int sspec_setfventrytype(int form, int var, int entrytype);

DESCRIPTION

Sets the type of form entry element that should be used for the given variable.

PARAMETERS

form server_spec index of the form.

var Index (into the FormVar array) of the variable.

entrytype HTML_FORM_TEXT for a text box, HTML_FORM_PULLDOWN for
a pull-down menu. The default is HTML_FORM_TEXT.

RETURN VALUE

0: Success
-1: Failure

LIBRARY

ZSERVER.LIB

sspec_setfvdesc

sspec_setfventrytype
Chapter 3: Server Utility Library 125

int sspec_setfvfloatrange(int form, int var, float low, float
high);

DESCRIPTION

Sets the range of a float.

PARAMETERS

form server_spec index of the form.

var Index (into the FormVar array) of the variable.

low Minimum value of the variable.

high Maximum value of the variable.

RETURN VALUE

0: Success
-1: Failure

LIBRARY

ZSERVER.LIB

int sspec_setfvlen(int form, int var, int len);

DESCRIPTION

Sets the length of a form variable (the maximum length of the string representation of the

variable).

PARAMETERS

form server_spec index of the form.

var Index (into the FormVar array) of the variable.

len Length of the variable.

RETURN VALUE

0: Success
-1: Failure

LIBRARY

ZSERVER.LIB

sspec_setfvfloatrange

sspec_setfvlen
126 TCP/IP User’s Manual

int sspec_setfvname(int form, int var, char* name);

DESCRIPTION

 Sets the name of a variable that is displayed in the HTML form table.

PARAMETERS

form server_spec index of the form.

var Index (into the FormVar array) of the variable.

name Display name of the variable.

RETURN VALUE

0: Success
-1: Failure

LIBRARY

ZSERVER.LIB

int sspec_setfvoptlist(int form, int var, char* list[], int
listlen);

DESCRIPTION

 Sets an enumerated list of possible values for a string variable.

PARAMETERS

form server_spec index of the form.

var Index (into the FormVar array) of the variable.

list[] Array of string values that the variable can assume.

listlen Length of the array.

RETURN VALUE

0: Success
-1: Failure

LIBRARY

ZSERVER.LIB
Chapter 3: Server Utility Library 127

int sspec_setfvrange(int form, int var, long low, long high);

DESCRIPTION

Sets the range of an integer.

PARAMETERS

form server_spec index of the form.

var Index (into the FormVar array) of the variable.

low Minimum value of the variable.

high Maximum value of the variable.

RETURN VALUE

0: Success
-1: Failure

LIBRARY

ZSERVER.LIB

int sspec_setfvreadonly(int form, int var, int readonly);

DESCRIPTION

Sets the form variable to be read-only.

PARAMETERS

form server_spec index of the form.

var Index (into the FormVar array) of the variable.

readonly 0 for read/write (this is the default);
1 for read-only.

RETURN VALUE

0: Success
-1: Failure

LIBRARY

ZSERVER.LIB

sspec_setfvrange

sspec_setfvreadonly
128 TCP/IP User’s Manual

int sspec_setrealm(int sspec, char* realm);

DESCRIPTION

Sets the realm field of a ServerSpec structure for HTTP authentication purposes.

PARAMETERS

sspec Index into the array of ServerSpec structures.

realm Name of the realm.

RETURN VALUE

0: Success
-1: Failure

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_getrealm

sspec_setrealm
Chapter 3: Server Utility Library 129

int sspec_setsavedata(char* data, unsigned long len, void*
fptr);

DESCRIPTION

Sets user-supplied data that will be saved in addition to the spec and user authentication

tables when sspec_save() is called.

PARAMETERS

data Pointer to location of user-supplied data.

len Length of the user-supplied data in bytes.

fptr Pointer to a function that will be called when the user-supplied data

has been restored

RETURN VALUE

0: Success
-1: Failure

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_save, sspec_restore

sspec_setsavedata
130 TCP/IP User’s Manual

int sspec_setuser(int sspec, int uid);

DESCRIPTION

Sets the user (owner) of a ServerSpec structure.

PARAMETERS

sspec Index into the array of ServerSpec structures.

uid Index into the array of ServerAuth structures (identifies user).

RETURN VALUE

0: Success
-1: Failure

LIBRARY

ZSERVER.LIB

SEE ALSO

sauth_adduser, sspec_getusername

sspec_setuser
Chapter 3: Server Utility Library 131

HTTP Server 4

An HTTP (Hypertext Transfer Protocol) server makes HTML (Hypertext Markup Language) docu-
ments and other documents available to clients, i.e., web browsers. HTTP is implemented by

HTTP.LIB.

4.1 HTTP Server Data Structures
There are four data structures in HTTP.LIB of interest to developers of HTTP servers.

4.1.1 HttpSpec
The data structure HttpSpec contains all the files, variables, and functions the Web server has

access to. The structure ServerSpec from ZSERVER.LIB may be instead.

4.1.1.1 HttpSpec fields

type This field tells the server if the entry is a file, variable or function
(HTTPSPEC_FILE, HTTPSPEC_VARIABLE or
HTTPSPEC_FUNCTION, respectively).

name This field specifies a unique name for referring to the entry. The
Web server recognizes “/index.html” as the entity that matches
“http://someurl.com/index.html”, and delivers the en-
try’s content based on the value of type (the first field).

data The third field is the physical address of the entity.

addr The fourth field is a short pointer to the entity. Either the third field
or the fourth field is valid, not both. All files must use the physical
address, variables and functions use the short pointer.

vartype This field describes the type of variable. Supported types are : INT8

INT16, PTR16, INT32, and FLOAT.

format The format field describes the printf format specifier used to dis-
play the variable.

realm This field is the name and password required to access the entity.

typedef struct {
word type;
char name[HTTP_MAXNAME];
long data;
void* addr;
word vartype;
char* format;
HttpRealm* realm;

} HttpSpec;
Chapter 4: HTTP Server 133

4.1.2 HttpType
The structure HttpType associates a file extension with a MIME type (Multipurpose Internet Mail
Extension) and a function which handles the MIME type. If the function pointer given is NULL, then

the default handler (which sends the content verbatim) is used.

4.1.3 HttpRealm
The structure HttpRealm holds user-ID and password pairs for partitions called realms. These

realms allow the protected resources on a server to be partitioned into a set of protection spaces, each

with its own authentication scheme and/or authorization database.

HTTP/1.0 Basic authentication is used. This scheme is not a secure method of user authentication

across an insecure network (e.g., the Internet). HTTP/1.0 does not, however, prevent additional
authentication schemes and encryption mechanisms from being employed to increase security.

In the HttpSpec structure, there is a pointer to a structure of type HttpRealm. To password-pro-
tect the entity, add the name, password, and realm desired. If you do not want to password-protect the

entity, leave the realm pointer in the HttpSpec structure NULL.

typedef struct {
char extension[10];
char type[20];
int (*fptr)(/* HttpState* */);

} HttpType;

typedef struct {
char username[HTTP_MAXNAME];
char password[HTTP_MAXNAME];
char realm[HTTP_MAXNAME];

} HttpRealm;
134 TCP/IP User’s Manual

4.1.4 HttpState
Use of this structure is necessary for CGI functions. Some of the fields are off-limits to developers.

typedef struct {
tcp_Socket s;

/* State information */
int state, substate, subsubstate, nextstate, laststate;

/* File referenced */
HttpSpecAll spec, subspec;
HttpType *type;
int (*handler)(), (*exec)();

/* rx/tx state variables */
long offset;
long length;
long filelength, subfilelength;
long pos, subpos;
long timeout, long main_timeout;
char buffer[HTTP_MAXBUFFER];
char *p;

/* http request and header info */
char method;
char url[HTTP_MAXURL];
char version;
char connection;
char content_type[40];
long content_length;
char has_form;
char finish_form;
char username[HTTP_MAXNAME];
char password[HTTP_MAXNAME];
char cookie[HTTP_MAXNAME];

/* other - don't touch */
int headerlen;
int headeroff;
char tag[HTTP_MAXNAME];
char value[HTTP_MAXNAME];

} HttpState;
Chapter 4: HTTP Server 135

4.1.4.1 HttpState Fields
The fields discussed here are available for developers to use in their application programs.

s This is the socket associated with the given HTTP server. A devel-
oper can use this in a CGI function to output dynamic data. Any of
the TCP functions can be used.

substate
subsubstate These are intended to be used to hold the current state of a state ma-

chine for a CGI function. That is, if a CGI function relinquishes con-
trol back to the HTTP server, then the values in these variables will
be preserved for the next http_handler() call, in which the

CGI function will be called again. These variables are initialized to

0 before the CGI function is called for the first time. Hence, the first
state of a state machine using substate should be 0.

timeout This value can be used by the CGI function to implement an internal
timeout.

main_timeout This value holds the timeout that is used by the web server. The web

server checks against this timeout on every call of
http_handler(). When the web server changes states, it resets

main_timeout. When it has stayed in one state for too long, it
cancels the current processing for the server and goes back to the ini-
tial state. Hence, a CGI function may want to reset this timeout if it
needs more processing time (but care should be taken to make sure

that the server is not locked up forever). This can be achieved like

this:
state->main_timeout = set_timeout(HTTP_TIMEOUT);

HTTP_TIMEOUT is the number of seconds until the web server will
time out. It is 16 seconds by default.

buffer[] A buffer that the developer can use to put data to be transmitted over
the socket. It is of size HTTP_MAXBUFFER.

p Pointer into the buffer given above.

method This should be treated as read-only. It holds the method by which

the web request was submitted. The value is either
HTTP_METHOD_GET or HTTP_METHOD_POST, for the GET

and POST request methods, respectively.

url[] This should be treated as read-only. It holds the URL by which the

current web request was submitted.

version; This should be treated as read-only. This holds the version of the

HTTP request that was made. It can be HTTP_VER_09,
HTTP_VER_10, or HTTP_VER_11 for 0.9, 1.0, or 1.1 requests,
respectively.
136 TCP/IP User’s Manual

content_type[] This should be treated as read-only. This buffer holds the value from

the Content-Type header sent by the client.

content_length; This should be treated as read-only. This variable holds the length

of the content sent by the client. It matches the value of the Content-
Length header sent by the client.

username[] Read-only buffer has username of the user making the request, if au-
thentication took place.

password[] Read-only buffer has password of the user making the request, if au-
thentication took place.

cookie[] Read-only buffer contains the value of the cookie "DCRABBIT"

(see http_setcookie() for more information).

headerlen
headeroff These variables can be used in conjunction to cause the web server

to flush data from the buffer[] array in the HttpState structure.
headerlen should be set to the amount of data in buffer[],
and headeroff should be set to 0 (to indicate the offset into the

array). When the CGI function is called the next time, the data in

buffer[] will be flushed to the socket.

4.2 Configuration Constants
The following macros are available in HTTP.LIB:

HTTP_MAXNAME

This is the maximum length for a name in the HttpSpec structure. This defaults to 20 characters.
Without overriding this value, the maximum length of any name is 19 characters because one charac-
ter is used for the NULL termination.

HTTP_MAXRAMSPEC

This is the maximum number of HttpSpec entries that can be added at runtime. This macro over-
rides SSPEC_MAXSPEC.

HTTP_MAXSERVERS

This is the maximum number of HTTP servers listening on port 80. The default is two. You may

increase this value to the maximum number of independent entities on your page. For example, for a

Web page with four pictures, two of which are the same, set HTTP_MAXSERVERS to four: one for
the page, one for the duplicate images, and one for each of the other two images. By default, each

server takes 2500 bytes of RAM. This RAM usage can be changed by the macro SOCK_BUF_SIZE
(or tcp_MaxBufSize which is deprecated as of Dynamic C ver. 6.57). Another option is to use the

tcp_reserveport function and a smaller number of sockets.
Chapter 4: HTTP Server 137

TIMEZONE
This macro specifies the distance in hours you are from Greenwich Mean Time (GMT), which is 5

hours ahead of Eastern Standard Time (EST). The default TIMEZONE is -8, which represents Pacific

Standard Time. You can use the tm_wr function to set the clock to the correct value. If you lose

power and don’t have the battery-backup option, the time will need to be reset.

4.3 Sample Programs
Sample programs demonstrating HTTP are in the \Samples\Tcpip\Http directory. There is a

configuration block at the beginning of each sample program. Unless you are using BOOTP/DHCP,
the macros in this block need to be changed to reflect your network settings. For most HTTP pro-
grams, you will be concerned with TIMEZONE and the IP address macros: MY_IPADDRESS,
MY_NETMASK, MY_GATEWAY.

4.3.1 Serving Static Web Pages
The sample program, Static.c, initializes HTTP.LIB and then sets up a basic static web page. It
is assumed you are on the same subnet as the controller. The code for Static.c is explained in the

following pages.

From Dynamic C, compile and run the program. You will see the LNK light on the board come on

after a couple of seconds. Point your internet browser at the controller (e.g., http://10.10.6.100/). The

ACT light will flash a couple of times and your browser will display the page.
138 TCP/IP User’s Manual

This program serves the static.html file and the rabbit1.gif file to any user contacting the

controller. If you want to change the file that is served by the controller, modify this line in

Static.c:

4.3.1.1 Adding Files to Display
Adding additional files to the controller to serve as web pages is slightly more complicated. First, add

an #ximport line with the filename as the first parameter, and a symbol that references it in

Dynamic C as the second parameter.

// Static.c

#define MY_IP_ADDRESS "10.10.6.100"
#define MY_NETMASK "255.255.255.0"
#define TIMEZONE -8

#memmap xmem
#use "dcrtcp.lib"
#use "http.lib"

#ximport "samples/tcpip/http/pages/static.html" index_html
#ximport "samples/tcpip/http/pages/rabbit1.gif" rabbit1_gif

const HttpType http_types[] =
{

{ ".html", "text/html", NULL},
{ ".gif", "image/gif", NULL}

};
const HttpSpec http_flashspec[] =
{

{HTTPSPEC_FILE, "/", index_html, NULL, 0, NULL, NULL},
{HTTPSPEC_FILE, "/index.html", index_html, NULL, 0, NULL, NULL},
{HTTPSPEC_FILE, "/rabbit1.gif", rabbit1_gif, NULL, 0, NULL, NULL},

};
main()
{

sock_init(); // Initializes the TCP/IP stack
http_init(); // Initializes the web server

tcp_reserveport(80);
while (1) {

http_handler();
}

}

#ximport "samples/tcpip/http/pages/static.html" index_html

#ximport "samples/tcpip/http/pages/static.html" index_html
#ximport "samples/tcpip/http/pages/newfile.html" newfile_html
Chapter 4: HTTP Server 139

Next, find these lines in Static.c:

Insert the name of your new file, preceded by “/”, into this structure, using the same format as the

other lines. Compile and run the program. Open up your browser to the new page (e.g.
“http://10.10.6.100/newfile.html”), and your new page will be displayed by the browser.

4.3.1.2 Adding Files with Different Extensions
If you are adding a file with an extension that is not html or gif, you will need to make an entry in the

HttpType structure for the new extension. The first field is the extension and the second field

describes the MIME type for that extension. You can find a list of MIME types at:

ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/media-types

In the media-types document located there, the text in the type column would precede the “/”, and the

subtype column would directly follow. Find the type subtype entry that matches your extension and

add it to the http_types table.

4.3.1.3 Handling of Files With No Extension
The entry “/” and files without an extension are dealt with by the handler specified in the first entry in

http_types[].

HttpSpec http_flashspec[] =
{

{HTTPSPEC_FILE, "/", index_html, NULL, 0, NULL, NULL},
{HTTPSPEC_FILE, "/index.html", index_html,NULL,0,NULL, NULL},
{HTTPSPEC_FILE, "/newfile.html", index_html, NULL,0, NULL, NULL},
{HTTPSPEC_FILE, "/rabbit1.gif", rabbit1_gif, NULL,0, NULL, NULL},

};

HttpType http_types[] =
{

{ ".html", "text/html", NULL},
{ ".gif", "image/gif", NULL}

};
140 TCP/IP User’s Manual

ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/media-types

4.3.2 Dynamic Web Pages Without HTML Forms
Serving a dynamic web page without the use of HTML forms is done by sample program Ssi.c,
shown below and located in /Samples/Tcpip/Http. This program displays four 'lights' and

four buttons to toggle them. Users can browse to the device and change the status of the lights.

#define MY_GATEWAY "10.10.6.19"
#define MY_IP_ADDRESS "10.10.6.100"
#define MY_NETMASK "255.255.255.0"

#define SOCK_BUF_SIZE 2048
#define HTTP_MAXSERVERS 1
#define MAX_SOCKETS 1

#define REDIRECTHOST MY_IP_ADDRESS
#define REDIRECTTO "http: //" REDIRECTHOST "/index.shtml"

#memmap xmem
#use "dcrtcp.lib"
#use "http.lib"

/*
* The source code for this program is ximported. This allows
* us to put the line <!--#include file="ssi.c" --> in the
* file Samples/Tcpip/Http/Pages/Showsrc.shtml.
*/

#ximport "samples/tcpip/http/pages/ssi.shtml" index_html
#ximport "samples/tcpip/http/pages/rabbit1.gif" rabbit1_gif
#ximport "samples/tcpip/http/pages/ledon.gif" ledon_gif
#ximport "samples/tcpip/http/pages/ledoff.gif" ledoff_gif
#ximport "samples/tcpip/http/pages/button.gif" button_gif
#ximport "samples/tcpip/http/pages/showsrc.shtml" showsrc_shtml
#ximport "samples/tcpip/http/ssi.c" ssi_c

/*
* In this case the extension .shtml is the first type in
* the type table. This causes the default (no extension)
* to assume the shtml_handler.
*/

const HttpType http_types[] = {
{ ".shtml", "text/html", shtml_handler}, // ssi
{ ".html", "text/html", NULL}, // html
{ ".cgi", "", NULL}, // cgi
{ ".gif", "image/gif", NULL}

};
char led1[15];
char led2[15];
char led3[15];
char led4[15];
Chapter 4: HTTP Server 141

int led1toggle(HttpState* state)
{

if (strcmp(led1,"ledon.gif")==0)
strcpy(led1,"ledoff.gif");

else
strcpy(led1,"ledon.gif");

cgi_redirectto(state,REDIRECTTO);
return 0;

}
int led2toggle(HttpState* state)
{

if (strcmp(led2,"ledon.gif")==0)
strcpy(led2,"ledoff.gif");

else
strcpy(led2,"ledon.gif");

cgi_redirectto(state,REDIRECTTO);
return 0;

}
int led3toggle(HttpState* state)
{

if (strcmp(led3,"ledon.gif")==0)
strcpy(led3,"ledoff.gif");

else
strcpy(led3,"ledon.gif");

cgi_redirectto(state,REDIRECTTO);
return 0;

}
int led4toggle(HttpState* state)
{

if (strcmp(led4,"ledon.gif")==0)
strcpy(led4,"ledoff.gif");

else
strcpy(led4,"ledon.gif");

cgi_redirectto(state,REDIRECTTO);
return 0;

}

142 TCP/IP User’s Manual

When you compile and run Ssi.c, you see the LNK light on the board come on. Point your browser
at the controller (e.g., http://10.10.6.100/). The ACT light will flash a couple of times and your
browser will display the page.

This program displays pictures of LEDs. Their state is toggled by pressing the image of a BUTTON.
This program uses Server Side Includes (SSI) and the Common Gateway Interface (CGI).

const HttpSpec http_flashspec[] = {

{HTTPSPEC_FILE, "/", index_html, NULL, 0, NULL, NULL},
{HTTPSPEC_FILE, "/index.shtml", index_html, NULL, 0, NULL, NULL},
{HTTPSPEC_FILE,"/showsrc.shtml", showsrc_shtml, NULL,0,NULL, NULL},
{HTTPSPEC_FILE,"/rabbit1.gif", rabbit1_gif, NULL, 0, NULL, NULL},
{HTTPSPEC_FILE, "/ledon.gif",ledon_gif, NULL, 0, NULL, NULL},
{HTTPSPEC_FILE,"/ledoff.gif",ledoff_gif, NULL, 0, NULL, NULL},
{HTTPSPEC_FILE,"/button.gif",button_gif,NULL, 0, NULL, NULL},
{HTTPSPEC_FILE, "ssi.c", ssi_c, NULL, 0, NULL, NULL},
{HTTPSPEC_VARIABLE, "led1", 0, led1, PTR16, "%s", NULL},
{HTTPSPEC_VARIABLE, "led2", 0, led2, PTR16, "%s", NULL},
{HTTPSPEC_VARIABLE, "led3", 0, led3, PTR16, "%s", NULL},
{HTTPSPEC_VARIABLE, "led4", 0, led4, PTR16, "%s", NULL},
{HTTPSPEC_FUNCTION, "/led1tog.cgi", 0, led1toggle, 0, NULL, NULL},
{HTTPSPEC_FUNCTION, "/led2tog.cgi", 0, led2toggle, 0, NULL, NULL},
{HTTPSPEC_FUNCTION, "/led3tog.cgi", 0, led3toggle, 0, NULL, NULL},
{HTTPSPEC_FUNCTION, "/led4tog.cgi", 0, led4toggle, 0, NULL, NULL},

};

main()
{

strcpy(led1,"ledon.gif");
strcpy(led2,"ledon.gif");
strcpy(led3,"ledoff.gif");
strcpy(led4,"ledon.gif");

sock_init();
http_init();
tcp_reserveport(80);

while (1) {
http_handler();

}
}

Chapter 4: HTTP Server 143

4.3.2.1 SSI Feature

SSI commands are an extension of the HTML comment command (<!--This is a comment -->). They

allow dynamic changes to HTML files and are resolved at the server side, so the client never sees

them. HTML files that need to be parsed because they contain SSI commands, are recognized by the

HTTP server by the file extension shtml.

The supported SSI commands are:

• #echo var
• #exec cmd
• #include file

They are used by inserting the command into an HTML file:

<!--#include file=“anyfile” -->

The server replaces the command, #include file, with the contents of anyfile.

#exec cmd executes a command and replaces the SSI command with the output.

Dynamically changing a variable on a web page
The Ssi.shtml file, located in the /Samples/Tcpip/Http/Pages folder, gives an example of
dynamically changing a variable on a web page using #echo var.

In an shtml file, the “<!--#echo var="led1" -->“ is replaced by the value of the variable

led1 from the http_flashspec structure.

shtml_handler looks up led1 and replaces it with the text output from:

The led1 variable is either ledon.gif or ledoff.gif. When the browser loads the page, it
replaces

with

<img SRC="<!--#echo var="led1" -->">

HttpSpec http_flashspec[] =
{

//...
{ HTTPSPEC_VARIABLE, "led1", 0, led1, PTR16, "%s", NULL}
//...

};

printf("%s",(char*)led1);

<img SRC="<!--#echo var="led1"-->">

144 TCP/IP User’s Manual

or

This causes the browser to load the appropriate image file.

4.3.2.2 CGI Feature
Ssi.c also demonstrates the Common Gateway Interface. CGI is a standard for interfacing external
applications with HTTP servers. Each time a client requests an URL corresponding to a CGI pro-
gram, the server will execute the CGI program in real-time.

In the Ssi.shtml file, this line creates the clickable button viewable from the browser.

When the user clicks on the button, the browser will request the /led1tog.cgi entity. This causes

the HTTP server to examine the contents of the http_flashspec structure looking for
/led1tog.cgi. It finds it and notices that led1toggle() needs to be called.

The led1toggle function changes the value of the led1 variable, then redirects the browser back

to the original page. When the original page is reloaded by the browser, the LED image will have

changed states to reflect the user’s action.

4.3.3 Web Pages With HTML Forms
With a web browser, HTML forms enable users to input values. With a CGI program, those values

can be sent back to the server and processed. The FORM and INPUT tags are used to create forms in

HTML.

The FORM tag specifies which elements constitute a single form and what CGI program to call when

the form is submitted. The FORM tag has an option called ACTION. This option defines what CGI
program is called when the form is submitted (when the “Submit” button is pressed). The FORM tag

also has an option called METHOD that defines the method used to return the form information to the

web server. In Section 4.3.3.1, “Sample HTML Page,” on page 146, the POST method is used, which

will be described later. All of the HTML between the <FORM> and </FORM> tags define what is

contained within a form.

The INPUT tag defines a specific form element, the individual input fields in a form. For example, a

text box in which the user may type in a value, or a pull-down menu from which the user may choose

an item. The TYPE parameter defines what type of input field is being used. In following example, in

the first two cases , it is the text input field, which is a single-line text entry box. The NAME parame-
ter defines what the name of that particular input variable is, so that when the information is returned

to the server, then the server can associate it with a particular variable. The VALUE parameter defines

the current value of the parameter. The SIZE parameter defines how long the text entry box is (in

characters).

At the end of the HTML page in our example, the Submit and Reset buttons are defined with the

INPUT tag. These use the special types “submit” and “reset”, since these buttons have special pur-
poses. When the submit button is pressed, the form is submitted by calling the CGI program

“myform”.

<TD> </TD>
Chapter 4: HTTP Server 145

4.3.3.1 Sample HTML Page
An HTML page that includes a form may look like the following:

<HTML>
<HEAD><TITLE>ACME Thermostat Settings</TITLE></HEAD>
<BODY>
<H1>ACME Thermostat Settings</H1>
<FORM ACTION="myform.html" METHOD="POST">

<TABLE BORDER>
<TR>

<TD>Name</TD>
<TD>Value</TD>
<TD>Description</TD>

</TR>

<TR>
<TD>High Temp</TD>
<TD><INPUT TYPE="text" NAME="temphi" VALUE="80"

SIZE="5"></TD>
<TD>Maximum in temperature range (°F)</TD>

</TR>

<TR>
<TD>Low Temp</TD>
<TD><INPUT TYPE="text" NAME="templo" VALUE="65"

SIZE="5"></TD>
<TD>Minimum in temperature range (°F)</TD>

</TR>

</TABLE>
<P>

<INPUT TYPE="submit" VALUE="Submit">
<INPUT TYPE="reset" Value="Reset">

</FORM></BODY>
</HTML>
146 TCP/IP User’s Manual

The form might display as follows:

When the form is displayed by a browser, the user can change values in the form. But how does this

changed data get back to the HTTP server? By using the HTTP POST command. When the user
presses the “Submit” button, the browser connects to the HTTP server and makes the following

request:

POST myform HTTP/1.0
.
. (some header information)
.
Content-Length: 19

where “myform” is the CGI program that was specified in the ACTION attribute of the FORM tag

and POST is the METHOD attribute of the FORM tag. “Content-Length” defines how many bytes of
information are being sent to the server (not including the request line and the headers).

Then, the browser sends a blank line followed by the form information in the following manner:

temphi=80&templo=65

That is, it sends back name and value pairs, separated by the ‘&’ character. (There can be some fur-
ther encoding done here to represent special characters, but we will ignore that in this explanation).
The server must read in the information, decode it, parse it, and then handle it in some fashion. It will
check the validity of the new values, and then assign them to the appropriate C variable if they are

valid.
Chapter 4: HTTP Server 147

4.3.3.2 POST-style form submission
If an HTML file specifies a POST-style form submission (i.e., METHOD="POST"), the form will still
be waiting on the socket when the CGI handler is called. Therefore, it is the job of the CGI handler to

read this data off the socket and parse it in a meaningful way. The sample files Post.c and

Post2.c in the \Samples\Tcpip\Http folder show how to do this.

The HTTP POST command can put any kind of data onto the network. There are many known encod-
ing schemes currently used, but we will only look at URL-encoded data in this document. Other
encoding schemes can be handled in a similar manner.

4.3.3.3 URL-encoded Data
URL-encoded data is of the form "name1=value1&name2=value2," and is similar to the CGI form

submission type passed in normal URLs. This has to be parsed to name=value pairs. The rest of
this section details an extensible way to do this.

This initializes two possible HTML form entries to be received, and a place to store the results.

#define MAX_FORMSIZE64
typedef struct {

char *name;
char value[MAX_FORMSIZE];

} FORMType;
FORMType FORMSpec[2];

void init_forms(void) {
FORMSpec[0].name = "user_name";
FORMSpec[1].name = "user_email";

}

148 TCP/IP User’s Manual

Reading & Storing URL-encoded Data
parse_post() reads URL-encoded data off the network. and calls parse_token() to store

the data in FORMSpec[].

// Parse one token 'foo=bar', matching 'foo' to the name field in
// the struct, and store 'bar' into the value

void parse_token(HttpState* state) {
int i, len;
for(i=0; i<HTTP_MAXBUFFER; i++) {

if(state->buffer[i] == '=')
state->buffer[i] = '\0';

}
state->p = state->buffer + strlen(state->buffer) + 1;
for(i=0; i<(sizeof(FORMSpec)/sizeof(FORMType)); i++) {

if(!strcmp(FORMSpec[i].name,state->buffer)) {
len = (strlen(state->p)>MAX_FORMSIZE) ? MAX_FORMSIZE - 1:
strlen(state->p);
strncpy(FORMSpec[i].value,state->p,1+len);
FORMSpec[i].value[MAX_FORMSIZE - 1] = '\0';

}
}

}

// Read URL-encoded data and call parsing function to store data
int parse_post(HttpState* state) {

int ret;
while(1) {

ret = sock_fastread((sock_type *)&state->s, state->p, 1);
if(0 == ret) {

*state->p = '\0';
parse_token(state);
return 1;

}
if((*state->p=='&') || (*state->p=='\r') || (*state->p=='\n'))
{ /* found one token */

*state->p = '\0';
parse_token(state);
state->p = state->buffer;

} else {
state->p++;

}
if((state->p - state->buffer) > HTTP_MAXBUFFER) {

/* input too long */
return 1;

}
}

}

Chapter 4: HTTP Server 149

4.3.3.4 Sample of a CGI Handler
This next function is the CGI handler. It is a state-machine-based handler that generates the page. It
calls parse_post() and references the structure that is now filled with the parsed data we

wanted.

/*
* Sample submit.cgi function
*/

int submit(HttpState* state) {
int i;
if(state->length) {

/* buffer to write out */

if(state->offset < state->length) {
state->offset += sock_fastwrite((sock_type *)&state->s,
state->buffer + (int)state->offset, (int)state->length-

(int)state->offset);
}
else
{

state->offset = 0;
state->length = 0;

}

150 TCP/IP User’s Manual

/*
* Sample submit.cgi function continued
*/

} else {
switch(state->substate) {

case 0:
strcpy(state->buffer, "HTTP/1.0 200 OK\r\n");
break;

case 1:
/* init the FORMSpec data */
FORMSpec[0].value[0] = '\0';
FORMSpec[1].value[0] = '\0';
state->p = state->buffer;
parse_post(state);
state->substate++;
return 0;

case 2:
http_setcookie(state->buffer, FORMSpec[0].value);
break;

case 3:
strcpy(state->buffer, "\r\n\r\n<html><head>

<title>Results</title></head><body>\r\n");
break;

case 4:
sprintf(state->buffer, "<p>Username:
%s<p>\r\n<p>Email:

%s<p>\r\n",
FORMSpec[0].value, FORMSpec[1].value);
break;

case 5:
strcpy(state->buffer, "<p>Go home
</body></html>\r\n");
break;

default:
state->substate = 0;
return 1;

}
state->length = strlen(state->buffer);
state->offset = 0;
state->substate++;

}
return 0;

}

Chapter 4: HTTP Server 151

4.3.4 HTML Forms Using Zserver.lib

In this section, we will step through a complete example program that uses HTML forms. Through

this step-by-step explanation, the method of using the functions in ZSERVER.LIB will become

clearer.

These lines are part of the standard TCP/IP configuration. You must change them to whatever your
local IP address and netmask are. Contact your network administrator for these numbers.

Defining FORM_ERROR_BUF is required in order to use the HTML form functionality in

Zserver.lib. The value represents the number of bytes that will be reserved in root memory for
the buffer which will be used for form processing. This buffer must be large enough to hold the name

and value for each variable, plus four bytes for each variable. Since we are building a small form, 256

bytes is sufficient.

Since we will not be using the http_flashspec array, then we can define the following macro,
which removes some code for handling this array from the web server.

These lines are part of the standard TCP/IP configuration.

These are the declarations of the variables that will be included in the form.

#define MY_IP_ADDRESS "10.10.6.112"
#define MY_NETMASK "255.255.255.0"

#define FORM_ERROR_BUF 256

#define HTTP_NO_FLASHSPEC

#memmap xmem
#use "dcrtcp.lib"
#use "http.lib"

const HttpType http_types[] =
{

{ ".html", "text/html", NULL}
};

int temphi;
int tempnow;
int templo;
float humidity;
char fail[21];
152 TCP/IP User’s Manual

An array of type FormVar must be declared to hold information about the form variables. Be sure to

allocate enough entries in the array to hold all of the variables that will go in the form. If more forms

are needed, then more of these arrays can be allocated.

These variables will hold the indices in the TCP/IP servers’ object list for the form and the form vari-
ables.

This array holds the possible values for the fail variable. The fail variable will be used to make a pull-
down menu in the HTML form.

These lines initialize the form variables.

The next line adds a form to the TCP/IP servers’object list. The first parameter gives the name of the

form. Hence, when a browser requests the page “myform.html”, the HTML form is generated and

presented to the browser. The second parameter gives the developer-declared array in which form

information will be saved. The third parameter gives the number of entries in the myform array (this

number should match the one given in the myform declaration above). The fourth parameter indi-
cates that this form should only be accessible to the HTTP server, and not the FTP server.
SERVER_HTTP should always be given for HTML forms. The return value is the index of the newly

created form in the TCP/IP servers’ object list.

void main(void)
{

FormVar myform[5];

int var;
int form;

const char* const fail_options[] = {
"Email",
"Page",
"Email and page",
"Nothing"

};

temphi = 80;
tempnow = 72;
templo = 65;
humidity = 0.3;
strcpy(fail, "Page");
Chapter 4: HTTP Server 153

This line sets the title of the form. The first parameter is the form index (the return value of
sspec_addform()), and the second parameter is the form title. This title will be displayed as the

title of the HTML page and as a large heading in the HTML page.

The following line adds a variable to the TCP/IP servers’ object list. It must be added to the TCP/IP

servers’ object list before being added to the form. The first parameter is the name to be given to the

variable, the second is the address of the variable, the third is the type of variable (this can be INT8,
INT16, INT32, FLOAT32, or PTR16), the fourth is a printf-style format specifier that indicates

how the variable should be printed, and the fifth is the server for which this variable is accessible. The

return value is the index of the variable in the TCP/IP servers’ object list.

The following line adds a variable to a form. The first parameter is the index of the form to add the

variable to (the return value of sspec_addform()), and the second parameter is the index of the

variable (the return value of sspec_addvariable()). The return value is the index of the variable

within the developer-declared FormVar array, myform.

This function sets the name of a form variable that will be displayed in the first column of the form

table. If this name is not set, it defaults to the name for the variable in the TCP/IP servers’ object list
(“temphi”, in this case). The first parameter is the form in which the variable is located, the second

parameter is the variable index within the form, and the third parameter is the name for the form vari-
able.

This function sets the description of the form variable, which is displayed in the third column of the

form table.

form = sspec_addform("myform.html", myform, 5, SERVER_HTTP);

sspec_setformtitle(form, "ACME Thermostat Settings");

var = sspec_addvariable("temphi", &temphi, INT16, "%d", SERVER_HTTP);

var = sspec_addfv(form, var);

sspec_setfvname(form, var, "High Temp");

sspec_setfvdesc(form, var, "Maximum in temperature range
(60 - 90 °F)");
154 TCP/IP User’s Manual

This function sets the length of the string representation of the form variable. In this case, the text box

for the form variable in the HTML form will be 5 characters long. If the user enters a value longer
than 5 characters, the extra characters will be ignored.

This function sets the range of values for the given form variable. The variable must be within the

range of 60 to 90, inclusive, or an error will be generated when the form is submitted.

This concludes setting up the first variable. The next five lines set up the second variable, which rep-
resents the current temperature.

Since the value of the second variable should not be modifiable via the HTML form (by default vari-
ables are modifiable,) the following line is necessary and makes the given form variable read-only

when the third parameter is 1. The variable will be displayed in the form table, but can not be modi-
fied within the form.

These lines set up the low temperature variable. It is set up in much the same way as the high temper-
ature variable.

sspec_setfvlen(form, var, 5);

sspec_setfvrange(form, var, 60, 90);

var = sspec_addvariable("tempnow", &tempnow, INT16, "%d",SERVER_HTTP);
var = sspec_addfv(form, var);
sspec_setfvname(form, var, "Current Temp");
sspec_setfvdesc(form, var, "Current temperature in °F");
sspec_setfvlen(form, var, 5);

sspec_setfvreadonly(form, var, 1);

var = sspec_addvariable("templo", &templo, INT16, "%d", SERVER_HTTP);
var = sspec_addfv(form, var);
sspec_setfvname(form, var, "Low Temp");
sspec_setfvdesc(form, var, "Minimum in temperature range

(50 - 80 °F)");
sspec_setfvlen(form, var, 5);
sspec_setfvrange(form, var, 50, 80);
Chapter 4: HTTP Server 155

This code begins setting up the string variable that specifies what to do in case of air conditioning

failure. Note that the variable is of type PTR16, and that the address of the variable is not given to

sspec_addvariable(), since the variable fail already represents an address.

This line associates an option list with a form variable. The third parameter gives the developer-
defined option array, and the fourth parameter gives the length of the array. The form variable can

now only take on values listed in the option list.

This function sets the type of form element that is used to represent the variable. The default is

HTML_FORM_TEXT, which is a standard text entry box. This line sets the type to

HTML_FORM_PULLDOWN, which is a pull-down menu.

Finally, this code sets up the last variable. Note that it is a float, so FLOAT32 is given in the

sspec_addvariable() call. The last function call is sspec_setfvfloatrange()

instead of sspec_setfvrange(), since this is a floating point variable.

These calls create aliases in the TCP/IP servers’ object list for
156 TCP/IP User’s Manual

These lines complete the sample program. They initialize the TCP/IP stack and web server, and run

the web server.

This is the form that is generated:

sock_init();
http_init();
while (1) {

http_handler();
}

}

Chapter 4: HTTP Server 157

4.4 Functions

void cgi_redirectto(HttpState* state, char* url);

DESCRIPTION

This utility function may be called in a CGI function to redirect the user to another page.
It sends a user to the URL stored in url. You should immediately issue a “return 0;”

after calling this function. The CGI is considered finished when you call this, and will be

in an undefined state.

PARAMETERS

state Current server struct, as received by the CGI function.

url Fully qualified URL to redirect to.

RETURN VALUE

None - sets the state, so the CGI must immediately return with a value of 0.

LIBRARY

HTTP.LIB

SEE ALSO

cgi_sendstring

cgi_redirectto
158 TCP/IP User’s Manual

void cgi_sendstring(HttpState* state, char* str);

DESCRIPTION

Sends a string to the user. You should immediately issue a “return 0;” after calling

this function. The CGI is considered finished when you call this, and will be in an unde-
fined state. This function greatly simplifies a CGI handler because it allows you to gen-
erate your page in a buffer, and then let the library handle writing it to the network.

PARAMETERS

state Current server struct, as received by the CGI function.

str String to send.

RETURN VALUE

None - sets the state, so the CGI must immediately return with a value of 0.

LIBRARY

HTTP.LIB

SEE ALSO

cgi_redirectto

int http_addfile(char* name, long location);

DESCRIPTION

Adds a file to the TCP/IP servers list.

PARAMETERS

name Name of the file (e.g., "/index.html").

location Address of the file data. (from #ximport)

RETURN VALUE

0: Success;
1: Failure.

LIBRARY

HTTP.LIB

SEE ALSO

http_delfile

cgi_sendstring

http_addfile
Chapter 4: HTTP Server 159

char *http_contentencode(char *dest, const char *src, int len);

DESCRIPTION

Converts a string to include HTTP transfer-coding ̀ `tokens'' (such as @ (decimal) for
at-sign) where appropriate. Source string is NULL byte terminated. Destination buffer is

bounded by a max string length. This function is reentrant.

PARAMETERS

dest Buffer where encoded string is stored.

src Buffer holding original string (not changed)

len Size of destination buffer.

RETURN VALUE

dest: There was room for all conversions.
NULL: Not enough room.

LIBRARY

HTTP.LIB

SEE ALSO

http_urldecode

http_contentencode
160 TCP/IP User’s Manual

int http_delfile(char* name);

DESCRIPTION

Deletes a file from TCP/IP servers’ object list.

PARAMETERS

name Name of the file, as passed to http_addfile.

RETURN VALUE

0: Success;
1: Failure (not found).

LIBRARY

HTTP.LIB

SEE ALSO

http_addfile

char* http_finderrbuf(char* name);

DESCRIPTION

Finds the occurrence of the given variable in the HTML form error buffer, and returns its

location.

PARAMETERS

name Name of the variable.

RETURN VALUE

NULL: Failure;
!NULL: Success, location of the variable in the error buffer.

LIBRARY

HTTP.LIB

http_delfile

http_finderrbuf
Chapter 4: HTTP Server 161

void http_nextfverr(char* start, char** name, char** value,
int* error, char** next);

DESCRIPTION

Gets the information for the next variable in the HTML form error buffer. If any of the

last four parameters in the function call are NULL, then those parameters will not have a

value returned. This is useful if you are only interested in certain variable information.

PARAMETERS

start Pointer to the variable in the buffer for which we want to get infor-
mation.

name Return location for the name of the variable.

value Return location for the value of the variable.

error Return location for whether or not the variable is in error (0 if it is

not, 1 if it is).

next Return location for a pointer to the variable after this one.

LIBRARY

HTTP.LIB

void http_handler();

DESCRIPTION

This is the basic control function for the HTTP server, a tick function to run the HTTP

daemon. It must be called periodically for the daemon to work. It parses the requests and

passes control to the other handlers, either html_handler, shtml_handler, or to

the developer-defined CGI handler based on the request’s extension.

LIBRARY

HTTP.LIB

SEE ALSO

http_init

http_nextfverr

http_handler
162 TCP/IP User’s Manual

int http_init(void);

DESCRIPTION

Initializes the HTTP daemon.

RETURN VALUE

0: Success.

LIBRARY

HTTP.LIB

SEE ALSO

http_handler

int http_parseform(int form, HttpState* state);

DESCRIPTION

Parses the returned form information. It expects a POST submission. This function is use-
ful for a developer who only wants the parsing functionality and wishes to generate forms
herself. Note that the developer must still build the array of FormVars and use the

server_spec table. This function will not, however, automatically display the form

when used by itself. If all variables satisfy all integrity checks, then the variables’ values

are updated. If any variables fail, then none of the values are updated, and error informa-
tion is written into the error buffer If this function is used directly, the developer must pro-
cess errors.

PARAMETERS

form server_spec index of the form (i.e., location in TCP/IP servers’
object list)

state The HTTP server with which to parse the POSTed data.

RETURN VALUE

0 if there is more processing to do;
1 form processing has been completed.

LIBRARY

HTTP.LIB

http_init

http_parseform
Chapter 4: HTTP Server 163

void http_setcookie(char* buf, char* value);

DESCRIPTION

This utility generates a cookie on the client. This will store the text in value into a cook-
ie-generation header that will be written to buf. This will not be written out to the client,
and it is still the responsibility of the client to write out. Also, this utility will generate an

HTTP header line that must be written along with any other headers that are written be-
fore the HTML file itself is written out. When a page is requested from the client, and the

cookie is already set, the text of the cookie will be stored in state->cookie[]. This

is a char*, and state->cookie[0] will equal '\0' if no cookie was available.

PARAMETERS

buf Buffer to store cookie-generation header.

value Text to store in cookie-generation header.

LIBRARY

HTTP.LIB

http_setcookie
164 TCP/IP User’s Manual

char *http_urldecode(char *dest, const char *src, int len);

DESCRIPTION

Converts a string with HTTP transfer-coding ̀ `tokens'' (such as %20 (hex) for space) into

actual values. Changes "+" into a space. String can be NULL terminated; it is also bound-
ed by a specified string length. This function is reentrant.

PARAMETERS

dest Buffer where decoded string is stored.

src Buffer holding original string (not changed).

len Maximum size of string (NULL terminated strings can be shorter).

RETURN VALUE

dest: If all conversion was good.
NULL: If some conversion had troubles.

LIBRARY

HTTP.LIB

SEE ALSO

http_contentencode

http_urldecode
Chapter 4: HTTP Server 165

int shtml_addfunction(char* name, void (*fptr()));

DESCRIPTION

Adds a CGI/SSI-exec function for making dynamic web pages to the TCP/IP servers’ ob-
ject list.

PARAMETERS

name Name of the function (e.g., "/foo.cgi").

fptr Function pointer to the handler, that must take HttpState* as an

argument. This function should return an int (0 while still pend-
ing, 1 when finished).

RETURN VALUE

0: Success;
1: Failure (no room).

LIBRARY

HTTP.LIB

SEE ALSO

shtml_delfunction

shtml_addfunction
166 TCP/IP User’s Manual

int shtml_addvariable(char* name, void* variable, word type,
char* format);

DESCRIPTION

This function adds a variable so it can be recognized by the shtml_handler.

PARAMETERS

name Name of the variable.

variable Pointer to the variable.

type Type of variable. The following types are supported: INT8,
INT16, INT32, PTR16, FLOAT32

format Standard printf format string. (e.g., "%d")

RETURN VALUE

0: Success;
1: Failure (no room).

LIBRARY

HTTP.LIB

SEE ALSO

shtml_delvariable

shtml_addvariable
Chapter 4: HTTP Server 167

int shtml_delfunction(char* name);

DESCRIPTION

Deletes a function from the TCP/IP servers’ object list.

PARAMETERS

name Name of the function as given to shtml_addfunction.

RETURN VALUE

0: Success;
1: Failure (not found).

LIBRARY

HTTP.LIB

SEE ALSO

shtml_addfunction

int shtml_delvariable(char* name);

DESCRIPTION

Deletes a variable from the TCP/IP servers’ object list.

PARAMETERS

name Name of the variable, as given to shtml_addvariable.

RETURN VALUE

0: Success;
1: Failure (not found).

LIBRARY

HTTP.LIB

SEE ALSO

shtml_addvariable

shtml_delfunction

shtml_delvariable
168 TCP/IP User’s Manual

FTP CLIENT 5

The library FTP_CLIENT.LIB implements the File Transfer Protocol (FTP) for the client side of
the connection.

5.1 Configuration Macros

DTP_PORT

The port to listen on for data connections. The low byte of the port number must be 0, as we use
the next 256 ports above the one supplied. The default is 0xA00.

FTP_MODE_DOWNLOAD

Specifies downloading a file.

FTP_MODE_UPLOAD

Specifies uploading a file.

MAX_NAMELEN

Maximum length for all usernames, passwords, and filenames. The default is 64. Note that this
must contain the NULL byte, so if it is set to 64, the maximum filename length is 63 characters.
Chapter 5: FTP CLIENT 169

5.2 Functions

int ftp_client_setup(long host, int port, char *username, char
*password, int mode, char *filename, char *dir, char
*buffer, int length);

DESCRIPTION

Sets up a FTP transfer. It is called first, then ftp_client_tick() is called until it
returns non-zero.

PARAMETERS

host Host IP address of FTP server.

port Port of FTP server, 0 for default.

username Username of account on FTP server.

password Password of account on FTP server.

mode Mode of transfer (FTP_MODE_UPLOAD or
FTP_MODE_DOWNLOAD).

filename Filename to get/put.

dir Directory file is in, NULL for default directory.

buffer Buffer to get/put the file from/to.

length On upload, length of file; on download size of buffer.

RETURN VALUE

0: Success;
1: Failure.

LIBRARY

FTP_CLIENT.LIB

ftp_client_setup
170 TCP/IP User’s Manual

int ftp_client_tick(void);

DESCRIPTION

Tick function to run the FTP daemon. Must be called periodically.

RETURN VALUE

0: Still pending, call again;
1: Success (file transfer complete);
2: Failure (general);
3: Failure (Couldn't connect to remote host);
4: Failure (File not found).

LIBRARY

FTP_CLIENT.LIB

int ftp_client_filesize(void);

DESCRIPTION

If a file was downloaded (mode == FTP_MODE_DOWNLOAD), when

ftp_client_tick() returns 1, this function will return the size of the fetched file.
This number will be clobbered if ftp_client_setup() is called again, so it should

be copied out and stored quickly!

RETURN VALUE

Size, in bytes.

LIBRARY

FTP_CLIENT.LIB

ftp_client_tick

ftp_client_filesize
Chapter 5: FTP CLIENT 171

5.3 Sample FTP Transfer

#define MY_IP_ADDRESS "10.10.6.105"
#define MY_NETMASK "255.255.255.0"

#memmap xmem
#use "dcrtcp.lib"
#use "ftp_client.lib"

#define REMOTE_HOST "10.10.6.19"
#define REMOTE_PORT 0

main() {
char buf[2048];
int ret, i, j;

printf("Calling sock_init()...\n");
sock_init();

/* Set up the ftp transfer. This is to the host defined above,
with a normal anonymous/e-mail password login info. A download
of the file "bar" is selected to be stored in 'buf.'*/

printf("Calling ftp_client_setup()...\n");
if(ftp_client_setup(resolve(REMOTE_HOST),REMOTE_PORT,

anonymous", "anon@anon.com",FTP_MODE_DOWNLOAD,"bar",
NULL,buf,sizeof(buf))) {

printf("FTP setup failed.\n");
exit(0);

}
printf("Looping on ftp_client_tick()...\n");
while(0 == (ret = ftp_client_tick()))

continue;

if(1 == ret) {
printf("FTP completed successfully.\n");

/* ftp_client_filesize() returns the size of the transfer,
senses we requested a download.*/

buf[ftp_client_filesize()] = '\0';
printf("Data => '%s'\n", buf);

} else {
printf("FTP failed: status == %d\n",ret);

}
}

172 TCP/IP User’s Manual

FTP Server 6

The library FTP_SERVER.LIB implements the File Transfer Protocol for the server side of the

connection. FTP uses two TCP connections to transfer a file. The FTP server does a passive open

on well-known port 21 and then listens for a client. Anonymous login is supported.

6.1 Configuration Constants
FTP_MAXSERVERS

This is the number of simultaneous connections the FTP server can support. It is recommended

that this be set to one (the default), as each subsequent server requires a significant amount of
RAM (2500 bytes by default; this can change through SOCK_BUF_SIZE or tcp_MaxBufSize
(deprecated)).

FTP_MAXNAME

The maximum length of filenames, usernames, and passwords. (It must include a null character so,
with it's default value of 20, filenames can be 19 characters long.)

FTP_MAXLINE

The size of the working buffer in each server. Also, this is the maximum size of each network

read/write. It needs to be a minimum of about 256 bytes for the server to function properly. You

probably don't need to change its default of 1024 bytes.

FTP_TIMEOUT

The length of time to wait for data from the remote host, before terminating the connection. If you

have a high-latency network condition, this might need to be increased from its default of 16 sec-
onds to avoid premature closures.

6.1.1 File Options
#define O_UNUSED 0
#define O_RDONLY 1
#define O_WRONLY 2
#define O_RDWR 3
Chapter 6: FTP Server 173

6.2 File Handlers
The data structure FTPhandlers can be passed to ftp_init to redefine how files are read and

written to. It contains function pointers to all of the individual functions. The default functions are

listed below.

typedef struct {
int (*open)();
int (*read)();
int (*write)();
int (*close)();
int (*getfilesize)();

} FTPhandlers;

int open(char *name, int options, int uid);

DESCRIPTION

Opens a file.

HeRAMETERS

name The file to open,

options For a read-only file the value is O_RDONLY; for a write-only file, the

value is O_WRONLY

uid The userid of the currently logged in user.

RETURN VALUE

A file descriptor should be returned, or -1 on error.

open
174 TCP/IP User’s Manual

int getfilesize(int fd);

DESCRIPTION

If a file was opened for reading (O_RDONLY), this should return the size of the file.

PARAMETERS

fd The file descriptor that was returned when the file was opened.

RETURN VALUE

The size of the file in bytes.

int read(int fd, char *buf, int len);

DESCRIPTION

Reads a buffer of length len from fd into buf.

PARAMETERS

fd The file descriptor returned from open().

buf The location to read the file into.

len The number of bytes to read.

RETURN VALUE

 The number of bytes read.

getfilesize

read
Chapter 6: FTP Server 175

int write(int fd, char *buf, int len);

DESCRIPTION

Writes a buffer of length len from buf to fd. This is not currently supported.

PARAMETERS

fd The file descriptor returned from open(). This is destination the

data will be written to

buf The source location of the data to be written

len The number of bytes to write.

RETURN VALUE

Number of bytes written.

int close(int fd);

DESCRIPTION

Closes the file, and invalidates the file descriptor.

PARAMETERS

fd The file descriptor (returned from open()) of the file to close.

RETURN VALUE

0

Please note that if you redefine any of these file handler functions, all must be

replaced.

write

close
176 TCP/IP User’s Manual

6.3 Functions

void ftp_init(FTPhandlers *handlers);

DESCRIPTION

Initializes the FTP daemon.

PARAMETERS

handlers NULL means use default internal file handlers;
!NULL means to supply a struct of pointers to the various custom

file handlers (open, read, write, close, getfilesize).

RETURN VALUE

None.

LIBRARY

FTP_SERVER.LIB

void ftp_tick(void);

DESCRIPTION

Once ftp_init has been called, ftp_tick must be called periodically to run the

daemon. This function is non-blocking.

LIBRARY

FTP_SERVER.LIB

ftp_init

ftp_tick
Chapter 6: FTP Server 177

6.4 Sample FTP Server
This code demonstrates a simple FTP server. The user "anonymous" may download the file "rab-
bitA.gif", but not "rabbitF.gif". The user "foo" (with password "bar") may download "rabbitF.gif",
but not "rabbitA.gif".

The program SSTATIC2.C in SAMPLES\TCPIP\HTML provides a more advanced example

than the one shown here.

/* ftp_server.c */

#define MY_IP_ADDRESS "10.10.6.105"
#define MY_NETMASK "255.255.255.0"
#define MY_GATEWAY "10.10.6.19"

#memmap xmem
#use "dcrtcp.lib"
#use "ftp_server.lib"

#ximport "samples/tcpip/http/pages/rabbit1.gif" rabbit1_gif

main() {
int file;
int user;
// Set up the first file and user
file = sspec_addxmemfile("rabbitA.gif", rabbit1_gif, SERVER_FTP);
user = sauth_adduser("anonymous", "", SERVER_FTP);
sspec_setuser(file, user);

// Set up the second file and user
file = sspec_addxmemfile("rabbitF.gif", rabbit1_gif, SERVER_FTP);
user = sauth_adduser("foo", "bar", SERVER_FTP);
sspec_setuser(file, user);

sock_init();
ftp_init(NULL); /* use default handlers */
tcp_reserveport(21);
while(1) {

ftp_tick();
}

}

178 TCP/IP User’s Manual

TFTP Client 7

TFTP.LIB implements the Trivial File Transfer Protocol (TFTP). This standard protocol (inter-
net RFC783) is a lightweight protocol typically used
Chapter 7: TFTP Client 179

7.0.2 Data Structure for TFTP
This data structure is used to send and receive. The tftp_state structure, which is required for
many of the API functions in TFTP.LIB, may be allocated either in root data memory or in

extended memory. This structure is approximately 155 bytes long.

Macros for tftp_state->mode
#define TFTP_MODE_NETASCII 0 // ASCII text
#define TFTP_MODE_OCTET 1 // 8-bit binary
#define TFTP_MODE_MAIL 2 // Mail (remote file name is

// email address e.g.
// user@host.blob.org)

7.0.3 Function Reference
Any of the following functions will require approximately 600-800 bytes of free stack. The data

buffer for the file to put or to get is always allocated in xmem (see xalloc()).

 7.0.3.1 TFTP Session
A session can be either a single download (get) or upload (put). The functions ending with 'x' are

versions that use a data structure allocated in extended memory, for applications that are con-
strained in their use of root data memory.

typedef struct tftp_state {
byte state; // Current state. LSB indicates read(0)

// or write(1). Other bits determine
// state within this (see below).

long buf_addr; // Physical address of buffer
word buf_len; // Length of buffer
word buf_used; // Amount Tx or Rx from/to buffer
word next_blk; // Next expected block #, or next to Tx
word my_tid; // UDP port number used by this host
udp_Socket * sock; // UDP socket to use
longword rem_ip; // IP address of remote host
longword timeout; // ms timer value for next timeout
char retry; // retransmit retry counter
char flags; // misc flags (see below).

// Following fields not used after initial request has been
// acknowledged.

char mode; // Translation mode (see below).
char file[129]; // File name on remote host (TFTP

// server)- NULL terminated. This
// field will be overwritten with a
// NULL-term error message from the
// server if an error occurs.

};
180 TCP/IP User’s Manual

int tftp_init(struct tftp_state * ts);

DESCRIPTION

This function prepares for a TFTP session and is called to complete initialization of the

TFTP state structure. Before calling this function, some fields in the structure

tftp_state must be set up as follows:

ts->state = <0 for read, 1 for write>
ts->buf_addr = <physical address of xmem buffer>
ts->buf_len = <length of physical buffer, 0-65535>
ts->my_tid = <UDP port number. Set 0 for default>
ts->sock = <address of UDP socket (udp_Socket *),or NULL to use

DHCP/BOOTP socket>
ts->rem_ip = <IP address of TFTP server host, or zero to use

default BOOTP host>
ts->mode = <one of the following constants:

TFTP_MODE_NETASCII ASCII text
TFTP_MODE_OCTET 8-bit binary
TFTP_MODE_MAIL Mail>

strcpy(ts->file, <remote filename or mail address>)

Note that mail mode can only be used to write mail to the TFTP server, and the file name

is the e-mail address of the recipient. The e-mail message must be ASCII-encoded and

formatted with RFC822 headers. Sending e-mail via TFTP is deprecated. Use SMTP in-
stead since TFTP servers may not implement mail.

PARAMETERS

ts Pointer to tftp_state.

RETURN VALUE

 0: OK
-4: Error, default socket in use.

LIBRARY

TFTP.LIB

tftp_init
Chapter 7: TFTP Client 181

http://www.faqs.org/rfcs/rfc822.html

int tftp_initx(long ts_addr);

DESCRIPTION

This function is called to complete initialization of the TFTP state structure, where the

structure is possibly stored somewhere other than in the root data space. This is a wrapper
function for tftp_init(). See that function description for details.

PARAMETERS

ts_addr Physical address of TFTP state (struct tftp_state)

RETURN VALUE

 0: OK
-1: Error, default socket in use.

LIBRARY

TFTP.LIB

tftp_initx
182 TCP/IP User’s Manual

int tftp_tick(struct tftp_state * ts);

DESCRIPTION

This function is called periodically in order to take the next step in a TFTP process. Ap-
propriate use of this function allows single or multiple transfers to occur without block-
ing. For multiple concurrent transfers, there must be a unique tftp_state structure,
and a unique UDP socket, for each transfer in progress. This function calls

sock_tick().

PARAMETERS

ts Pointer to TFTP state. This must have been set up using

tftp_init(), and must be passed to each call of
tftp_tick() without alteration.

RETURN VALUE

1: OK, transfer not yet complete.
0: OK, transfer complete

-1: Error from remote side, transfer terminated. In this case, the ts_addr->file field will
 be overwritten with a NULL-terminated error message from the server.
-2: Error, could not contact remote host or lost contact.
-3: Timed out, transfer terminated.
-4: (not used)
-5: Transfer complete, but truncated -- buffer too small to receive the complete file.

LIBRARY

TFTP.LIB

tftp_tick
Chapter 7: TFTP Client 183

int tftp_tickx(long ts_addr);

DESCRIPTION

This function is a
184 TCP/IP User’s Manual

int tftp_exec(char put, long buf_addr, word * len, int mode,
char * host, char * hostfile, udp_Socket * sock);

DESCRIPTION

Prepare and execute a complete TFTP session, blocking until complete.This function is a wrapper
for tftp_init() and tftp_tick(). It does not return until the complete file is transferred or
an error occurs. Note that approximately 750 bytes of free stack will be required by this function.

PARAMETERS

put 0: get file from remote host; 1: put file to host.

buf_addr Physical address of data buffer.

len Length of data buffer. This is both an input and a return parameter.
It should be initialized to the buffer length. On return, it will be set
to the actual length received (for a get), or unchanged (for a put).

mode Data representation: 0=NETASCII, 1=OCTET (binary), 2=MAIL.

host Remote host name, or NULL to use default BOOTP host.

hostfile Name of file on remote host, or e-mail address for mail.

sock UDP socket to use, or NULL to re-use BOOTP socket if available.

RETURN VALUE

 0: OK, transfer complete.
-1: Error from remote side, transfer terminated. In this case, ts_addr->file

 will be overwritten with a NULL-terminated error message from the server.
-2: Error, could not contact remote host or lost contact.
-3: Timed out, transfer terminated
-4: sock parameter was NULL, but BOOTP socket was unavailable.

LIBRARY

TFTP.LIB

tftp_exec
Chapter 7: TFTP Client 185

186 TCP/IP User’s Manual

SMTP Mail Client 8

SMTP (Simple Mail Transfer Protocol) is one of the most common ways of sending e-mail. SMTP

is a simple text conversation across a TCP/IP connection. The SMTP server usually resides on

TCP port 25 waiting for clients to connect.

Sending mail with the SMTP.LIB client library is a four-step process. First, build your e-mail
message, then call smtp_sendmail(). Next, repetitively call smtp_mailtick() while it is

returning SMTP_PENDING. Finally, call smtp_status() to determine if the mail was sent suc-
cessfully. There is a sample program in Section 8.4 that outlines how to send a simple mail mes-
sage.

8.1 Sample Conversation
The following is a typical listing of mail from the controller (me@somewhere.com) to some-
one@somewhereelse.com. The mail server that the controller is talking to is mail.somehost.com.
The lines that begin with a numeric value are coming from the mail server. The other lines were

sent by the controller. More information on the exact specification of SMTP and the meanings of
the commands and responses can be found in RFC821 at http://www.ietf.org.

You can see a listing of the conversation between your controller and the mail server by defining

the SMTP_DEBUG macro at the top of your program.

Note that there must be a blank line after the line “Subject: test mail”.

220 mail.somehost.com ESMTP Service (WorldMail 1.3.122) ready
HELO 10.10.6.100

250 mail.somewhere.com
MAIL FROM: <me@somewhere.com>

250 MAIL FROM:<me@somewhere.com> OK
RCPT TO: <someone@somewhereelse.com>

250 RCPT TO:<someone@somewhereelse.com> OK
DATA

354 Start mail input; end with <CRLF>.<CRLF>
From: <me@somewhere.com>
To: <someone@somewhereelse.com>
Subject: test mail

test mail
.

250 Mail accepted
QUIT

221 mail.somehost.com QUIT
Chapter 8: SMTP Mail Client 187

http://www.ietf.org

8.2 Configuration
The SMTP client is configured by using compiler macros.

SMTP_DEBUG

This macro tells the SMTP code to log events to the STDIO window in Dynamic C. This provides

a convenient way of troubleshooting an e-mail problem.

SMTP_DOMAIN

This macro defines the text to be sent with the HELO client command. Many mail servers ignore

the information supplied with the HELO, but some e-mail servers require the fully qualified name

in this field (i.e., somemachine.somedomain.com). If you have problems with e-mail being

rejected by the server, turn on SMTP_DEBUG. If it is giving an error message after the HELO line,
talk to the administer of the machine for the appropriate value to place in SMTP_DOMAIN. If you

do not define this macro, it will default to MY_IP_ADDRESS.

#define SMTP_DOMAIN "somemachine.somedomain.com"

SMTP_SERVER

This macro defines the mail server that will relay the controller’s mail. This server must be config-
ured to relay mail for your controller. You can either place a fully qualified domain name or an IP

address in this field.

#define SMTP_SERVER "mail.mydomain.com"

or

#define SMTP_SERVER "10.10.6.19"

SMTP_TIMEOUT

This macro tells the SMTP code how long in seconds to try to send the e-mail before timing out. It
defaults to 20 seconds.

#define SMTP_TIMEOUT 10
188 TCP/IP User’s Manual

8.3 Functions

void smtp_sendmail(char* to, char* from, char* subject, char*
message);

DESCRIPTION

This function initializes the internal data structures with strings for the to e-mail address,
the from e-mail address, the subject, and the body of the message. You should not modify

these strings until smtp_mailtick no longer returns SMTP_PENDING.

PARAMETERS

to String containing the e-mail address of the destination.

from String containing the e-mail address of the source.

subject String containing the subject of the message.

message String containing the message. (This string must NOT contain the

byte sequence "\r\n.\r\n" (CRLF.CRLF), as this is used to mark the

end of the e-mail, and will be appended to the e-mail automatically.)

RETURN VALUE

None.

LIBRARY

SMTP.LIB

smtp_sendmail
Chapter 8: SMTP Mail Client 189

void smtp_sendmailxmem(char* to, char* from, char* subject,
long message, int messagelen);

DESCRIPTION

This function initializes the internal data structures with strings for the to e-mail address,
the from e-mail address, the subject, and the body of the message. You should not modify

these strings until smtp_mailtick no longer returns SMTP_PENDING.

PARAMETERS

to String containing the e-mail address of the destination.

from String containing the e-mail address of the source.

subject String containing the subject of the message.

message Physical address in xmem containing the message. (The message

must NOT contain the byte sequence "\r\n.\r\n" (CRLF.CRLF), as

this is used to mark the end of the e-mail, and will be appended to

the e-mail automatically.)

messagelen Length of the message in xmem.

RETURN VALUE

None.

LIBRARY

SMTP.LIB

smtp_sendmailxmem
190 TCP/IP User’s Manual

int smtp_mailtick(void);

DESCRIPTION

Repetitively call this function until e-mail is completely sent. For a small message, this

function will need to be called about 20 times to send the message. The number of times

will vary depending on the latency of you connection to the mail server and the size of
your message.

RETURN VALUE

SMTP_SUCCESS - e-mail sent.
SMTP_PENDING - e-mail not sent yet call smtp_mailtick again.
SMTP_TIME - e-mail not sent within SMTP_TIMEOUT seconds.
SMTP_UNEXPECTED - received an invalid response from SMTP server.

LIBRARY

SMTP.LIB

int smtp_status(void);

DESCRIPTION

Return the status of the last e-mail processed.

RETURN VALUE

SMTP_SUCCESS - e-mail sent.
SMTP_PENDING - e-mail not sent yet call smtp_mailtick again.
SMTP_TIME - e-mail not sent within SMTP_TIMEOUT seconds.
SMTP_UNEXPECTED - received an invalid response from SMTP server.

LIBRARY

SMTP.LIB

smtp_mailtick

smtp_status
Chapter 8: SMTP Mail Client 191

8.4 Sample Sending of an E-mail
This program, smtp.c, uses the SMTP library to send an e-mail.

/* Change these macros to the appropriate values or change
* the smtp_sendmail(...) call in main() to reference your values.
*/

#define FROM "myaddress@mydomain.com"
#define TO "myaddress@mydomain.com"
#define SUBJECT "test mail"
#define BODY "You've got mail!"

/* Change these values to your network settings */
#define MY_IP_ADDRESS "10.10.6.100"
#define MY_NETMASK "255.255.255.0"
#define MY_GATEWAY "10.10.6.19"

/* SMTP_SERVER tells DCRTCP where your mail server is. This
* value can be the name or the IP address. */

#define SMTP_SERVER "mymailserver.mydomain.com"

//#define SMTP_DOMAIN "mycontroller.mydomain.com"

//#define SMTP_DEBUG

#memmap xmem
#use dcrtcp.lib
#use smtp.lib

main() {
sock_init();

smtp_sendmail(FROM, TO, SUBJECT, BODY);

while(smtp_mailtick()==SMTP_PENDING)
continue;

if(smtp_status()==SMTP_SUCCESS)
printf("Message sent\n");

else
printf("Error sending message\n");

}

192 TCP/IP User’s Manual

POP3 Client 9

Post Office Protocol version 3 (POP3) is probably the most common way of retrieving e-mail
from a remote server. Most e-mail programs, such as Eudora, MS-Outlook, and Netscape’s e-mail
client, use POP3. The protocol is a fairly simple text-based chat across a TCP socket, normally

using TCP port 110.

There are two ways of using POP3.LIB. The first method provides a raw dump of the incoming

e-mail. This includes all of the header information that is sent with the e-mail, which, while some-
times useful, may be more information than is needed. The second method provides a parsed ver-
sion of the e-mail, with the sender, recipient, subject-line, and body-text separated out.

In both methods, each line of e-mail has CRLF stripped from it and ‘\0’ appended to it.

9.1 Configuration
The POP3 client can be configured through the following macros:

POP_BUFFER_SIZE

This will set the buffer size for POP_PARSE_EXTRA in bytes. These are the buffers that hold the

sender, recipient and subject of the e-mail. POP_BUFFER_SIZE defaults to 64 bytes.

POP_DEBUG

This will turn on debug information. It will show the actual conversation between the device and

the remote mail server, as well as other useful information.

POP_NODELETE

This will stop the POP3 library from removing messages from the remote server as they are read.
By default, the messages are deleted to save storage space on the remote mail server.

POP_PARSE_EXTRA

This will enable the second mode, creating a parsed version of the e-mail as mentioned above. The

POP3 library parses the incoming mail more fully to provide the Sender, Recipient, Subject, and

Body fields as separate items to the call-back function.

9.2 Three Steps to Receive E-mail.
1. pop3_init()is called to provide the POP3 library with a call-back function. This call-back

will be used to provide you the incoming data. This function is usually called once.

2. pop3_getmail() is called to start the e-mail being received, and to provide the library with

e-mail account information.

3. pop3_tick() is called as long as it returns POP_PENDING, to actually run the library. The

library will call the function you provided several times to give you the e-mail.
Chapter 9: POP3 Client 193

9.3 Call-Back Function
There are two types of call-back functions, depending on if POP_PARSE_EXTRA is defined and

will be handled separately.

9.3.1 Normal call-back
When not using POP_PARSE_EXTRA, you need to provide a function with the following proto-
type:

int storemail(int number, char *buf, int size);

number is the number of the e-mail being transferred, usually 1 for the first, 2 for the second, but
not necessarily. The numbers are only guaranteed to be unique between all e-mails transferred.

buf is the text buffer containing one line of the incoming e-mail. This must be copied out imme-
diately, as the buffer will be different when the next line comes in, and your call-back is called

again.

size is the number of bytes in buf.

See pop.c in the Dynamic C Sample folder for an example of this style of call-back.

9.3.2 POP_PARSE_EXTRA call-back
If POP_PARSE_EXTRA is defined, you need to provide a call-back function with the following

prototype:

int storemail(int number, char *to, char *from, char *subject,
char *body, int size);

number, body, and size are the same as before.

to has the e-mail address of who this e-mail was sent to.

from has the e-mail address of who sent this e-mail.

subject has the subject line of the e-mail.

These new fields should only be used the first time your call-back is called with a new number

field. In subsequent calls, these fields are not guaranteed to have accurate information.

See parse_extra.c in Section 9.5 for an example of this type of call-back.
194 TCP/IP User’s Manual

9.4 Functions

int pop3_init(int (*storemail)());

DESCRIPTION

This function must be called before any other POP3 function is called. It will set the call-
back function where the incoming e-mail will be passed to. This probably should only be

called once.

PARAMETERS

storemail A function pointer to the call-back function.

RETURN VALUE

0: Success;
1: Failure.

LIBRARY

POP3.LIB

pop3_init
Chapter 9: POP3 Client 195

int pop3_getmail(char *username, char *password, long server);

DESCRIPTION

This function will initiate receiving e-mail (a POP3 request to a remote e-mail server).
IMPORTANT NOTE - the buffers for username and password must NOT change

until pop3_tick() returns something besides POP_PENDING. These values are not
saved internally, and depend on the buffers not changing.

PARAMETERS

username The username of the account to access.

password The password of the account to access.

server The IP address of the server to connect to, as returned from re-
solve().

RETURN VALUE

0: Success;
1: Failure.

LIBRARY

POP3.LIB

int pop3_tick(void)

DESCRIPTION

A standard tick function, to run the daemon. Continue to call it as long as it returns
POP_PENDING.

RETURN VALUE

POP_PENDING: Transfer is not done; call pop3_tick again.
POP_SUCCESS: All e-mails were received successfully.
POP_ERROR: Unknown error occurred.
POP_TIME: Session timed-out. Try again, or use POP_TIMEOUT to increase the time-
out length.

LIBRARY

POP3.LIB

pop3_getmail

pop3_tick
196 TCP/IP User’s Manual

9.5 Sample receiving of e-mail
parse_extra.c connects to a POP3 server and downloads e-mail form it.

#define MY_IP_ADDRESS "10.10.6.105" // change these configuration macros
#define MY_NETMASK "255.255.255.0" // to match your host.
#define MY_GATEWAY "10.10.6.1"
#define MY_NAMESERVER "10.10.6.254"

#define POP_HOST mail.domain.com" //enter the name of your POP3 server

#define POP_USER "myname" //enter username for POP3 account
#define POP_PASS "secret" //enter password for POP3 account

#define POP_PARSE_EXTRA
#memmap xmem
#use "dcrtcp.lib"
#use "pop3.lib"
int n;

int storemsg(int num, char *to, char *from, char *subject, char *body, int
len){

#GLOBAL_INIT{n = -1;}
if(n != num) {

n = num;
printf("RECEIVING MESSAGE <%d>\n", n);
printf("\tFrom: %s\n", from);
printf("\tTo: %s\n", to);
printf("\tSubject: %s\n", subject);

}
printf("MSG_DATA> '%s'\n", body);
return 0;

}
main(){

static long address;
static int ret;

sock_init();
pop3_init(storemsg); //set up call-back function

printf("Resolving name...\n");
address = resolve(POP_HOST);
printf("Calling pop3_getmail()...\n");
pop3_getmail(POP_USER, POP_PASS, address); // POP3 request to server

printf("Entering pop3_tick()...\n");
while((ret = pop3_tick()) == POP_PENDING)

continue;
if(ret == POP_SUCCESS)

printf("POP was successful!\n");
if(ret == POP_TIME)

printf("POP timed out!\n");
if(ret == POP_ERROR)

printf("POP returned a general error!\n");

printf("All done!\n");
}

Chapter 9: POP3 Client 197

9.5.1 Sample Conversation
The following is an example POP3 session from the specification in RFC1939. For more informa-
tion see:

 http://www.rfc-editor.org/rfc/std/std53.txt

In the following example, lines starting with ‘S:’ are the server’s message, and lines starting with

‘C:’ are the client’s messages.

S: <wait for connection on TCP port 110>
C: <open connection>
S: +OK POP3 server ready <1896.697170952@dbc.mtview.ca.us>
C: APOP mrose c4c9334bac560ecc979e58001b3e22fb
S: +OK mrose's maildrop has 2 messages (320 octets)
C: STAT
S: +OK 2 320
C: LIST
S: +OK 2 messages (320 octets)
S: 1 120
S: 2 200
S: .
C: RETR 1
S: +OK 120 octets
S: <the POP3 server sends message 1>
S: .
C: DELE 1
S: +OK message 1 deleted
C: RETR 2
S: +OK 200 octets
S: <the POP3 server sends message 2>
S: .
C: DELE 2
S: +OK message 2 deleted
C: QUIT
S: +OK dewey POP3 server signing off (maildrop empty)
C: <close connection>
S: <wait for next connection>

For debugging purposes, you can observe this conversation by defining POP_DEBUG at the top of
your program.
198 TCP/IP User’s Manual

http://www.rfc-editor.org/rfc/std/std53.txt

Telnet 10

The library Vserial.lib implements the telecommunications network interface, known as tel-
net. This implementation is a telnet to serial and serial to telnet gateway.

10.1 Configuration Macros

SERIAL_PORT_SPEED

The baud rate of the serial port. Defaults to 115,200 bps.

TELNET_COOKED

#define this to have telnet control codes stripped out of the data stream (useful if you are actu-
ally Telneting to the device from another box; should probably NOT be defined if you are using

two devices as a transparent bridge over the Ethernet).

10.2 Functions
Chapter 10: Telnet 199

int telnet_tick(void);

DESCRIPTION

Must be called periodically to run the daemon.

RETURN VALUE

0: Success (call it again);
1: Failure; TELNET_CONNECT died, or a fatal error occurred.

LIBRARY

VSERIAL.LIB

void telnet_close(void);

DESCRIPTION

Terminates any connections currently open, and shuts down the daemon.

LIBRARY

VSERIAL.LIB

telnet_tick

telnet_close
200 TCP/IP User’s Manual

10.3 An Example Telnet Server

/*
* Telnet Server: Listens on a telnet port for a connection, and
* transparently passes data on to the serial port
*/

// Initilize the IP address/etc as usual
#define MY_IP_ADDRESS "10.10.6.105"
#define MY_NETMASK "255.255.255.0"
#define MY_GATEWAY "10.10.6.19"
#define MY_NAMESERVER "10.10.6.19"

#define SERIAL_PORT_SPEED 115200

/*
* We want RAW data, leaving in any telnet/etc control codes.
* (this is a raw data port). #define this to cook the input.
*/

#undef TELNET_COOKED

#memmap xmem
#use "dcrtcp.lib"
#use "vserial.lib"

/*
* TCP Port to listen on. 0 defaults to normal telnet port
*/

#define SERVER_PORT 0

main() {
sock_init(); // Init TCP/IP
telnet_init(TELNET_LISTEN,0,SERVER_PORT); //Init Vserial server

// Loop on telenet_tick() to run server; this is non-blocking
while(!telnet_tick())

continue;

// Error happened, close telnet connection (shouldn't happen)
telnet_close();

}

Chapter 10: Telnet 201

10.3.1 A Sample Client To Connect to the Server

// Client.c Connects to above server, at given IP address and port

#define MY_IP_ADDRESS "10.10.6.105"
#define MY_NETMASK "255.255.255.0"
#define MY_GATEWAY "10.10.6.19"
#define MY_NAMESERVER "10.10.6.19"

// Set the speed of the serial port
#define SERIAL_PORT_SPEED 115200

#undef TELNET_COOKED
#memmap xmem
#use "dcrtcp.lib"
#use "vserial.lib"

// TCP Port to connect to. 0 defaults to normal telnet port
#define SERVER_PORT 0

// Remote IP to connect to.
#define REMOTE_HOST "10.10.6.19"

main() {
sock_init();
/*
* Init the VSerial server to connect, and reconnect if the
* connection is lost
*/

telnet_init(TELNET_RECONNECT,resolve(REMOTE_HOST),SERVER_PORT);

// Loop on telenet_tick() to run it; this is non-blocking
while(!telnet_tick())

continue;

// Error happened, we get here - close it (shouldn't happen)
telnet_close();

}

202 TCP/IP User’s Manual

General Purpose Console 11

11.1 Introduction
The library, Zconsole.lib, implements a serial-based console that can:

• Configure a board.

• Upload and download web pages.

• Change web page variables without re-uploading the page.

• Send e-mail.

11.2 Console Features
Recognizing that embedded control systems are wide-ranging in their requirements, Zcon-
sole.lib was designed with flexibility and extensibility in mind. Designers can choose the

available functionality they want and leave the rest alone. The Console includes:

• A fail-safe backup system for configuration data.

• Defaul1Tt4(e)]TJ
/T9 1 Tf2.9011 0 TD
0 Tc
()Tj
/F5 1 Tf
0.2527 0 TD
0.0065 Tc
[(in)dest
Chapter 11: General Purpose Console 203

11.3 Console Commands and Messages
The Console is a command-driven application. A command is issued either at the keyboard using

a terminal emulator or a command is generated and sent from an attached machine. The Console

carries out the command, and either the message “OK” \r\n is returned, or an error is returned in

the form of:

ERROR XXXX This is an error message.\r\n

Note that the carriage return and new line characters (\r\n) are always returned by the Console

whether the command completed successfully or not.

11.3.1 Console Command Data Structure
The command system is set up at compile time with an array of ConsoleCommand structures.
There is one array entry for each command recognized by the Console.

typedef struct {
char* command;
int (*cmdfunc)();
long helptext;

} ConsoleCommand

command
This field is a string like the following: “SET MAIL FROM “. That is, each word of the command

is separated by a space. The case of the command does not matter. Entering this string is how the

command is invoked.

cmdfunc
This field is a function pointer to the function that implements the command. The functions that
come with the Console are listed in Section 11.3.3.1 on page 206.

helptext
This field points to a text file. The text file contains help information for the associated command.
When HELP COMMAND is entered, this text file (the help information for COMMAND) will be

printed to the Console. The help text comes from #ximported text files.

 11.3.1.1 Help Text for General Cases
There are two cases in Zconsole.lib where help text is needed, but is not associated with a

particular command. It is still
204 TCP/IP User’s Manual

11.3.2 Console Command Array
An array of ConsoleCommand structures must be defined in an application program as a con-
stant global variable named console_commands[]. All commands available at the Console,
those provided in Zconsole.lib and custom commands, must have an entry in this array.

11.3.3 Console Commands
The following is a list of the commands provided by Zconsole.lib. When the command name

{i.e., the string in the command field) is received by the Console, the function pointed to in the

cmdfunc field is executed. When the Console receives the command, HELP <command name>,
the text file located at physical address helptext will be displayed.

const ConsoleCommand console_commands[] =
{
{ "HELLO WORLD", hello_world, 0 },
{ "ECHO", con_echo, help_echo_txt },
{ "HELP", con_help, help_help_txt },
{ "", NULL, help_txt },
{ "SET", NULL, help_set_txt },
{ "SET PARAM", con_set_param, 0 },
{ "SET IP", con_set_ip, help_set_txt },
{ "SET NETMASK", con_set_netmask, help_set_txt },
{ "SET GATEWAY", con_set_gateway, help_set_txt },
{ "SET NAMESERVER", con_set_nameserver, help_set_txt },
{ "SET MAIL", NULL, help_set_mail_txt },
{ "SET MAIL SERVER", con_set_mail_server, help_set_mail_server_txt },
{ "SET MAIL FROM", con_set_mail_from, help_set_mail_from_txt },
{ "SHOW", con_show, help_show_txt },
{ "PUT", con_put, help_put_txt },
{ "GET", con_get, help_get_txt },
{ "DELETE", con_delete, help_delete_txt },
{ "LIST", NULL, help_list_txt },
{ "LIST FILES", con_list_files, help_list_txt },
{ "LIST VARIABLES", con_list_variables, help_list_txt },
{ "CREATEV", con_createv, help_createv_txt },
{ "PUTV", con_putv, help_putv_txt },
{ "GETV", con_getv, help_getv_txt },
{ "MAIL", con_mail, help_mail_txt },
{ "RESET FILES", con_reset_files, 0 }
{ "RESET VARIABLES”, con_reset_variables, help_reset_variables }

};
Chapter 11: General Purpose Console 205

 11.3.3.1 Default Command Functions
The following functions are provided in Zconsole.lib. Each one takes a pointer to a Con-
soleState structure as its only parameter, following the prototype for custom functions

described in Section 11.3.3.2 on page 209. Each of these functions return 0 when it has more pro-
cessing to do (and thus will be called again), 1 for successful completion of its task, and -1 to

report an error.

Parameters needed by the commands using these functions are passed on the command line.

con_createv()
This function creates a variable that can be used with SSI commands in SHTML files. Certain SSI
commands can be replaced by the value of this variable, so that a web page can be dynamically

altered without re-uploading the entire page. Note, however, that the value of the variable is not
preserved across power cycles, although the variable entry is still preserved. That is, the value of
the variable may change after a power cycle. It can be changed again, though, with a putv com-
mand. It works in the following fashion (if the command is called “CREATEV”):

usage: "createv <varname> <vartype> <format> <value> [strlen]"

A web variable that can be referenced within web files is created.

<varname> is the name of the variable

<vartype> is the type of the variable (INT8, INT16, INT32, FLOAT32, or STRING)

<format> is the printf-style format specifier for outputting the variable (such as "%d")

<value> is the value to assign the variable.

[strlen] is only used if the variable is of type STRING. It is used to give the maximum length

of the string.

con_delete()
This function deletes a file from the file system. The command that uses this function takes one

parameter: the name of the file to delete.

con_echo()
This function turns on or off the echoing of characters on a particular I/O stream. That is, it does

not affect echoing globally, but only for the I/O stream on which it is issued. The command that
uses this function takes one parameter: ON | OFF.

con_get()
This function displays a file from the file system. It works in the following fashion (if the com-
mand is called “GET”):

• ASCII mode: usage: "get <filename>"

The file is then sent, followed by the usual OK message.

• BINARY mode: usage: "get <filename> <size in bytes>"

The message "LENGTH <len>" will be sent, indicating length of the file to be sent, and then the
file will be sent, but not more than <size in bytes> bytes.
206 TCP/IP User’s Manual

con_getv()
This function displays the value of the given variable. The variable is displayed using the printf-
style format specifier given in the createv command. The command that uses this function

takes one parameter: the name of the variable.

con_help()
This function implements the help system for the Console. The command that uses this function

takes one parameter: the name of another command. The Console outputs the associated help text
for the requested command. The help text is the text file referenced in the third field of the Con-
soleCommand structure.

con_list_files()
This function lists the files in the filesystem and their file sizes. The command that uses this func-
tion takes no parameters.

con_list_variables()
This function displays the names and types of all variables. The command that uses this function

takes no parameters.

con_mail()
This function sends mail. If the command that uses this function is named mail, the usage is:

"mail destination@where.com"

The first line of the message will be used as the subject, and the other lines are the body. The body

is terminated with a ^D or ^Z (0x04 or 0x1A).

con_put()
This function creates a new file in the file system for use with the HTTP server. It works in the fol-
lowing fashion (if the command is called “PUT”):

• ASCII mode: usage: "put <filename>"
The file is then sent, terminating with a ^D or ^Z (0x04 or 0x1A).

• BINARY mode: usage: "put <filename> <size in bytes>"
The file is then sent, and must be exactly the specified number of bytes in length.

Note that ASCII mode is only useful for text files, since the Console will ignore non-displayable

characters. In binary mode, the put command will time out after CON_TIMEOUT seconds of inac-
tivity (60 by default).

con_putv()
This function updates the value of a variable. The command that uses this function takes two

parameters: the name of the variable, and the new value for the variable.

con_reset_files
This function removes all web files.

con_reset_variables
This function removes all web variables.
Chapter 11: General Purpose Console 207

con_set_gateway()
This function changes the gateway of the board. The command that uses this function takes one

parameter: the new gateway in dotted quad notation, e.g., 192.168.1.1.

con_set_ip()
This function changes the IP address of the board. The command that uses this function takes one

parameter: the new IP address in dotted quad notation, e.g., 192.168.1.112.

con_set_param
This function sets the parameter for the current I/O device. Depending on the I/O device, this

value could be a baud rate, a port number or a channel number. The command that uses this func-
tion takes one parameter: the value for the I/O device parameter.

con_set_mail_from
This function sets the return address for all e-mail messages. This address will be added to the out-
going e-mail and should be valid in case the e-mail needs to be returned. The command that uses

this function takes one parameter: the return address.

con_set_mail_server
This functions identifies the SMTP server to use. The command that uses this function takes one

parameter: The IP address of the SMTP server.

con_set_netmask()
This function changes the netmask of the board. The command that uses this function takes one

parameter: the new netmask in dotted quad notation, e.g., 255.255.255.0.

con_show()
This function displays the current configuration of the board (IP address, netmask, and gateway).
If the developer’s application has configuration options she would like to show other than the IP

address, netmask, and gateway, she will probably want to implement her own version of the show

command. The new show command can be modelled after con_show() in ZConsole.lib. The

command that uses this function takes no parameters.
208 TCP/IP User’s Manual

 11.3.3.2 Custom Console Commands
Developers are not limited to the default commands. A custom command is easy to add to the

Console; simply create an entry for it in console_commands[]. The three fields of this entry

were described in Section 11.3.1. The first field is the name of the command. The second field is

the function that implements the command. This function must follow this prototype:

int function_name (ConsoleState* state);

The parameter passed to the function is a structure of type ConsoleState. Some of the fields in

this structure must be manipulated by your custom command function, other fields are used by

Zconsole.lib and must not be changed by the your program.

typedef struct {
int console_number;
ConsoleIO* conio;
int state;
int laststate;

char command[CON_CMD_SIZE];
char* cmdptr;
char buffer[CON_BUF_SIZE]; // Use for reading in data.
char* bufferend; // Use for reading in data.

ConsoleCommand* cmdspec;
int sawcr;
int sawesc;
int echo; // Check if echo is enabled, or change it.
int substate;
unsigned int error;
int numparams; // Read-only: check # of parms in command.
char cmddata[CON_CMD_DATA_SIZE];
FileNumber filenum;// Use for file processing.
File file; // Use for file processing.
int spec; // Use for working with Zserver entities
long timeout; // Use for extending the timeout.

} ConsoleState;

To accomplish its tasks, the function should use state->substate for its state machine

(which will be initialized to zero before dispatching the command handler), and

state->command to read out the command buffer (to get other parameters to the command, for
instance). In case of error, the function should set state->error to the appropriate value. The

buffer at state->cmddata is available for the command to preserve data across invocations of
the command’s state machine. The size of the buffer is adjustable via the CON_CMD_DATA_SIZE

macro (set to 16 bytes by default). Generally this buffer area will be cast into a data structure

appropriate for the given command state machine.

IMPORTANT: The fields discussed in the previous paragraph and the fields that have comments in

the structure definition are the only ones that an application program should change. The other
fields must not be changed.

The function should return 0 when it has more processing to do (and thus will be called again), 1

for successful completion of its task, and -1 to report an error.
Chapter 11: General Purpose Console 209

The third and final field of the console_commands[] entry is the physical address of the help

text file for the custom command in question. This file must be #ximported, along with all of
the default command function help files that are being used.

11.3.4 Console Error Messages
The Console library provides a list of default error messages for the default Console commands.
An application program must define an array for these error messages, as well as for any custom

error messages that are desired. To include only the default error messages, the following array is

sufficient:

const ConsoleError console_errors[] = {
CON_STANDARD_ERRORS // includes all default error messages

}

 11.3.4.1 Default Error Messages
These are the error codes for the default error messages and the text that will be displayed by the

Console if the error occurs.

#define CON_ERR_TIMEOUT 1
#define CON_ERR_BADCOMMAND 2
#define CON_ERR_BADPARAMETER 3
#define CON_ERR_NAMETOOLONG 4
#define CON_ERR_DUPLICATE 5
#define CON_ERR_BADFILESIZE 6
#define CON_ERR_SAVINGFILE 7
#define CON_ERR_READINGFILE 8
#define CON_ERR_FILENOTFOUND 9
#define CON_ERR_MSGTOOLONG 10
#define CON_ERR_SMTPERROR 11
#define CON_ERR_BADPASSPHRASE 12
#define CON_ERR_CANCELRESET 13
#define CON_ERR_BADVARTYPE 14
#define CON_ERR_BADVARVALUE 15
#define CON_ERR_NOVARSPACE 16
#define CON_ERR_VARNOTFOUND 17
#define CON_ERR_STRINGTOOLONG 18
#define CON_ERR_NOTAFILE 19
#define CON_ERR_NOTAVAR 20
#define CON_ERR_COMMANDTOOLONG 21
#define CON_ERR_BADIPADDRESS 22
210 TCP/IP User’s Manual

#define CON_STANDARD_ERRORS \
{ CON_ERR_TIMEOUT, "Timed out." },\
{ CON_ERR_BADCOMMAND, "Unknown command." },\
{ CON_ERR_BADPARAMETER, "Bad or missing parameter." },\
{ CON_ERR_NAMETOOLONG, "Filename too long." },\
{ CON_ERR_DUPLICATE, "Duplicate object found." },\
{ CON_ERR_BADFILESIZE, "Bad file size." },\
{ CON_ERR_SAVINGFILE, "Error saving file." },\
{ CON_ERR_READINGFILE, "Error reading file." },\
{ CON_ERR_FILENOTFOUND, "File not found." },\
{ CON_ERR_MSGTOOLONG, "Mail message too long." },\
{ CON_ERR_SMTPERROR, "SMTP server error." },\
{ CON_ERR_BADPASSPHRASE, "Passphrases do not match!" },\
{ CON_ERR_CANCELRESET, "Reset cancelled." },\
{ CON_ERR_BADVARTYPE, "Bad variable type." },\
{ CON_ERR_BADVARVALUE, "Bad variable value." },\
{ CON_ERR_NOVARSPACE, "Out of variable space." },\
{ CON_ERR_VARNOTFOUND, "Variable not found." },\
{ CON_ERR_STRINGTOOLONG, "String too long." },\
{ CON_ERR_NOTAFILE, "Not a file." },\
{ CON_ERR_NOTAVAR, "Not a variable." },\
{ CON_ERR_COMMANDTOOLONG, "Command too long." },\
{ CON_ERR_BADIPADDRESS, "Bad IP address." }

 11.3.4.2 Custom Error Messages
Developers can create their own error messages by following the format of the default error mes-
sages. The error code numbers should be greater than 1,000 to save room for expansion of built-in

error messages.

#define NEW_ERROR 1001

const ConsoleError console_errors[] = {
CON_STANDARD_ERRORS, // includes all default error messages
{ NEW_ERROR, "Any error message I want." }

}

The default error messages should be included in console_errors[] along with any custom

error messages that are used since the commands that come with Zconsole.lib each expect
their own particular error message.
Chapter 11: General Purpose Console 211

11.4 Console I/O Interface
Multiple I/O methods are supported, as well as the ability to add custom I/O methods. An array of
ConsoleIO structures must be defined in the application program and named console_io[].
This structure holds handlers for common I/O functions for the I/O method.

typedef struct {
long param; // Baud for serial, port for telnet, etc.
int (*open) ();
int (*close)();
int (*tick) ();
int (*puts) ();
int (*rdUsed) ();
int (*wrUsed) ();
int (*wrFree) ();
int (*read) ();
int (*write) ();

} ConsoleIO;

11.4.1 How to Include an I/O Method
Each supported I/O method is determined at compile time, i.e., each supported I/O method must
have an entry in console_io[].

11.4.2 Predefined I/O Methods
Several predefined I/O methods are in Zconsole.lib. They will be included by entering their
respective macros in console_io[].

const ConsoleIO console_io[] = {
CONSOLE_IO_SERA(baud rate),
CONSOLE_IO_SERB(baud rate),
CONSOLE_IO_SERC(baud rate),
CONSOLE_IO_SERD(baud rate),
CONSOLE_IO_SP(channel number),
CONSOLE_IO_TELNET(port number),

}

The macros expand to the appropriate set of pre-defined handler functions, e.g.,

#define CONSOLE_IO_SERA(param){ param, serAopen, serAclose, NULL,
conio_serAputs, serArdUsed, serAwrUsed, serAwrFree, serAread, serAwrite}

 11.4.2.1 Serial Ports
There are predefined I/O methods for all four of the serial ports on a Rabbit board. The baud rate is

set by passing it to the macro. See above.

 11.4.2.2 Telnet
The Console runs a telnet server. The port number is passed to the macro CONSOLE_IO_TELNET.
The user telnets to the controller that is running the Console.
212 TCP/IP User’s Manual

 11.4.2.3 Slave Port
The Rabbit slave port is an 8-bit bidirectional data port. The Console runs on the slave processor.
Two drivers are needed.

 11.4.2.3.1 Slave Port Driver
The slave port driver is implemented by SLAVE_PORT.LIB. For an application to use the slave

port:

• The driver must be installed by including the library in the program.

• A call to SPinit(mode) must be made to initialize the driver.

• A function to process Console commands sent to the slave port must be provided.

The slave port has 256 channels, separate port addresses that are independent of one another. A

handler function for each channel that is used must be provided. For details on how to do this,
please see the Dynamic C User’s Manual.

A stream-based handler, SPShandler(), to process Console commands for the slave is pro-
Chapter 11: General Purpose Console 213

11.5.1 File System Initialization
The Console depends on the file system that is included with Dynamic C. Besides including the

library and defining the macro that directs the file system to EEPROM memory:

#define FS_FLASH
#use "FileSystem.lib"

the application program must initialize the file system with a call to fs_init().

11.5.2 Serial Buffers
If the pre-defined serial I/O methods are used, the circular buffers used for I/O data can be resized

from their default values of 31 bytes by using macros. For example, if CONSOLE_IO_SERIALC

is included in console_io[], then lines similar to the following can be in the application pro-
gram:

#define CINBUFSIZE 1023
#define COUTBUFSIZE 255

In general, these buffers can be smaller for slower baud rates, but must be larger for faster baud

rates.

11.5.3 Using TCP/IP
To use the TCP/IP functionality of the Console you must have the following line in your applica-
tion program:

#use “dcrtcp.lib”

If you are serving web pages you must also include http.lib, and if you are sending e-mail you

must include smtp.lib.
214 TCP/IP User’s Manual

11.5.4 Required Console Functions
To run the Console, the following two functions are required.

int console_init(void);

DESCRIPTION

This function will initialize the Console.

RETURN VALUE

0: Success;
1: Error.

void console_tick(void);

DESCRIPTION

This function needs to be called periodically in an application program to allow the Con-
sole time for processing.

11.5.5 Console Execution Choices
The Console can be used interactively with a terminal emulator or programatically by sending

commands from a program running on a device connected to the controller that is running the

Console.

 11.5.5.1 Terminal Emulator
To manually enter Console commands from a keyboard and view results in the stdio window you

must:

1. Run Dynamic C, version 7.5 or later.

2. Open a terminal emulator. Windows HyperTerminal comes with Windows. It does not
work with binary files, only ASCII. Tera Term, available for free download at

http://hp.vector.co.jp/authors/VA002416/teraterm.html

can handle both ASCII and binary. Configure the terminal emulator as follows:

COM port (1 or 2) to which 3-wire serial cable is connected
Baud Rate 57,600 bps
Data Bits 8
Parity None
Stop Bits 1
Flow Control None

console_init

console_tick
Chapter 11: General Purpose Console 215

http://hp.vector.co.jp/authors/VA002416/teraterm.html

e the
The terminal emulator should now accept Console commands.

To avoid losing a <LF> at the beginning of a file when using the con_put command function,
select Setup->Terminal from the Tera Term menu and set the Transmit option to CR+LF. This

option might be located elsewhere if you are using a different terminal emulator.

11.6 Backup System
The Console can save configuration parameters to the file system so that they are available across

power cycles. The backup process is done by con_backup(). Unlike the other console com-
mand functions, con_backup() does not take a parameter and it returns 0 if the backup was

successful and 1 if it was not. This function is called by several of the console command functions

that change configuration parameters, or that add or delete files or variables from the file system.
Caution is advised when calling con_backup() since it writes to flash memory.

11.6.1 Data Structure for Backup System

The developer must define an array called console_backup[] of ConsoleBackup struc-
tures.

typedef struct {
void* data;
int len;
void (*postload)();
void (*presave)();

} ConsoleBackup;

data
This is a pointer to the data to be backed up.

len
This is how many bytes of data need to be backed up.

postloadThis is a function pointer to a function that is called after configuration data is loaded, in cas
developer needs to do something with the newly loaded configuration data.

presave
This is a function pointer that is called just before the configuration data is saved so that the devel-
oper can fill in the data structure to be saved. The functions referenced by postload() and

presave() should have the following prototype:

void my_preload(void* dataptr);

The dataptr parameter is the address of the configuration data (the same as the data pointer in

the ConsoleBackup structure).
216 TCP/IP User’s Manual

11.6.2 Array Definition for Backup System
const ConsoleBackup console_backup[] = {

CONSOLE_BASIC_BACKUP, // echo state, baud-rate/port number
CONSOLE_TCPIP_BACKUP,
CONSOLE_HTTP_BACKUP,
CONSOLE_SMTP_BACKUP
{ my_data, my_data_len, my_preload, my_presave }

}

CONSOLE_BASIC_BACKUP causes backup of the echo state (on or off), baud rate and port num-
ber information.

CONSOLE_TCPIP_BACKUP causes backup of the IP addresses of the controller board and the IP

address of its netmask, gateway and name server.

CONSOLE_HTTP_BACKUP causes backup of the files and variables visible to the HTTP server.

CONSOLE_SMTP_BACKUP causes backup of the mail configuration.

11.7 Console Macros
Zconsole.lib offers many macros that change the behavior of the Console.

CON_CMD_SIZE
Changes the size of the command buffer that is allocated for each I/O method. This limits the

length of a command line. It is allocated in root data space. Defaults to 128 bytes.

CON_BUF_SIZE
Changes the size of the data buffer that is allocated for each I/O method. If the baud rate or trans-
fer speed is too great for the Console to keep up, then increasing this value may help avoid

dropped characters. It is allocated in root data space. It defaults to 1024 bytes.

CON_CMD_DATA_SIZE
Adjusts the size of the user data area within the state structure so that user commands can preserve

arbitrary information across calls. It is allocated in root data space. Defaults to 16 bytes.

CON_VAR_BUF_SIZE
Adjusts the size of the variable buffer, in which values of variables can be stored for use with the

HTTP server. It is allocated in xmem space. Defaults to 1024 bytes.

CON_INIT_MESSAGE
Defines the message that is displayed on all Console I/O methods upon startup. Defaults to “Con-
sole Ready\r\n”.

CON_TIMEOUT
Adjusts the number of seconds that the Console will wait before cancelling the current command.
The timeout can be adjusted in user code in the following manner:

state->timeout = con_set_timeout(CON_TIMEOUT);

This is useful for custom user commands so that they can indicate when something “meaningful”

has happened on the Console (such as some data being successfully transferred).
Chapter 11: General Purpose Console 217

CON_BACKUP_FILE1
The file number used for the first backup file. This number must be in the range 128-143, so that
fs_reserve_blocks() can be used to guarantee free space for the backup files. Defaults to

128.

CON_BACKUP_FILE2
Same as above, except this is for the second backup file. Two files are used so that configuration

information is preserved even if the power cycles while configuration data is being saved. This

number must be in the range 128-143. Defaults to 129.

CON_HELP_VERSION
This macro should be defined if the developer wants a version message to be displayed when the

HELP command is issued with no parameters. If this macro is defined, then the macro

CON_VERSION_MESSAGE must also be defined.

CON_VERSION_MESSAGE
This defines the version message to display when the HELP command is issued with no parame-
ters. It is not defined by default, so has no default value.

11.8 Sample Program
/***
tcpipconsole.c
Z-World, 2001
This sample program demonstrates many of the features of ZCONSOLE.LIB.

Among the features this sample program supports is network
configuration, uploading web pages, changing variables for use with web
pages, sending mail, and access to the console through a telnet client.
**/

#define MY_IP_ADDRESS "10.10.6.112"
#define MY_NETMASK "255.255.255.0"
#define MY_GATEWAY "10.10.6.1"
#define MY_NAMESERVER "10.10.6.1"
#define SMTP_SERVER "10.10.6.1"

/*
* Size of the buffers for serial port C. If you want to use
* another serial port, you should change the buffer macros below
* appropriately (and change the console_io[] array below).
*/

#define CINBUFSIZE 1023
#define COUTBUFSIZE 255

/*
* Maximum number of connections to the web server. This indicates
* the number of sockets that the web server will use.
*/

#define HTTP_MAXSERVERS 2
218 TCP/IP User’s Manual

/*
* Maximum number of sockets this program can use. The web server
* is taking two sockets (see above), the mail client uses one
* socket, and the telnet interface uses 1 socket.
*/

#define MAX_SOCKETS 4

/*
* All web server content is dynamic, so we do not need
* http_flashspec[].
*/

#define HTTP_NO_FLASHSPEC

/*
* The filesystem that the console uses should be located in flash.
*/

#define FS_FLASH

/*
* Console configuration
*/

/*
* The number of console I/O streams that this program supports. Since
* we are supporting serial port C and telnet, there are two I/O streams.
*/

#define NUM_CONSOLES 2

/*
* If this macro is defined, then the version message will be shown
* with the help command (when the help command has no parameters).
*/

#define CON_HELP_VERSION

/*
* Defines the version message that will be displayed in the help
* command if CON_HELP_VERSION is defined.
*/

#define CON_VERSION_MESSAGE "TCP/IP Console Version 1.0\r\n"

/*
* Defines the message that is displayed on all I/O channels when the

console starts.
*/

#define CON_INIT_MESSAGE CON_VERSION_MESSAGE
Chapter 11: General Purpose Console 219

/*
* These ximport directives include the help texts for the
* consolecommands. Having the help text in xmem helps save
* root code space.
*/

#ximport "samples\zconsole\tcpipconsole_help\help.txt" help_txt
#ximport "samples\zconsole\tcpipconsole_help\help_help.txt"
help_help_txt

#ximport "samples\zconsole\tcpipconsole_help\help_echo.txt"
help_echo_txt

#ximport "samples\zconsole\tcpipconsole_help\help_set.txt"
help_set_txt

#ximport "samples\zconsole\tcpipconsole_help\help_set_param.txt"
help_set_param_txt

#ximport "samples\zconsole\tcpipconsole_help\help_set_mail.txt"
help_set_mail_txt

#ximport
"samples\zconsole\tcpipconsole_help\help_set_mail_server.txt"
help_set_mail_server_txt

#ximport "samples\zconsole\tcpipconsole_help\help_set_mail_from.txt"
help_set_mail_from_txt

#ximport "samples\zconsole\tcpipconsole_help\help_show.txt"
help_show_txt

#ximport "samples\zconsole\tcpipconsole_help\help_put.txt"
help_put_txt

#ximport "samples\zconsole\tcpipconsole_help\help_get.txt"
help_get_txt

#ximport "samples\zconsole\tcpipconsole_help\help_delete.txt"
help_delete_txt

#ximport "samples\zconsole\tcpipconsole_help\help_list.txt"
help_list_txt

#ximport "samples\zconsole\tcpipconsole_help\help_createv.txt"
help_createv_txt

#ximport "samples\zconsole\tcpipconsole_help\help_putv.txt"
help_putv_txt

#ximport "samples\zconsole\tcpipconsole_help\help_getv.txt"
help_getv_txt

#ximport "samples\zconsole\tcpipconsole_help\help_mail.txt"
help_mail_txt

#ximport "samples\zconsole\tcpipconsole_help\help_reset.txt"
help_reset_txt

#ximport "samples\zconsole\tcpipconsole_help\help_reset_files.txt"
help_reset_files_txt

#ximport
"samples\zconsole\tcpipconsole_help\help_reset_variables.txt"
help_reset_variables_txt
220 TCP/IP User’s Manual

#memmap xmem

#use "FileSystem.lib"
#use "dcrtcp.lib"
#use "http.lib"
#use "smtp.lib"

/*
* Note that all libraries that zconsole.lib needs must be #use'd
* before #use'ing zconsole.lib .
*/

#use "zconsole.lib"

/*
* This function prototype is for a custom command, so it must be
* declared before the console_command[] array.
*/

int hello_world(ConsoleState* state);

/*
* This array defines which I/O streams for which the console will
* be available. The streams included below are defined through
* macros. Available macros are CONSOLE_IO_SERA, CONSOLE_IO_SERB,
* CONSOLE_IO_SERC, CONSOLE_IO_SERD, CONSOLE_IO_TELNET, and
* CONSOLE_IO_SP (for the slave port). The parameter for the macro
* represents the initial baud rate for serial ports, the port
* number for telnet, or the channel number for the slave port.
* It is possible for the user to define her own I/O handlers and
* include them in a ConsoleIO structure in the console_io array.
* Remember that if you change the number of I/O streams here, you
* should also change the NUM_CONSOLES macro above.
*/

const ConsoleIO console_io[] =
{

CONSOLE_IO_SERC(57600),
CONSOLE_IO_TELNET(23)

};
Chapter 11: General Purpose Console 221

/*
* This array defines the commands that are available in the console.
* The first parameter for the ConsoleCommand structure is the
* command specification--that is, the means by which the console
* recognizes a command. The second parameter is the function
* to call when the command is recognized. The third parameter is
* the location of the #ximport'ed help file for the command.
* Note that the second parameter can be NULL, which is useful if
* help information is needed for something that is not a command
* (like for the "SET" command below--the help file for "SET"
* contains a list of all of the set commands). Also note the
* entry for the command "", which is used to set up the help text
* that is displayed when the help command is used by itself (that
* is, with no parameters).
*/

const ConsoleCommand console_commands[] =
{

{ "HELLO WORLD", hello_world, 0 },
{ "ECHO", con_echo, help_echo_txt },
{ "HELP", con_help, help_help_txt },
{ "", NULL, help_txt },
{ "SET", NULL, help_set_txt },
{ "SET PARAM", con_set_param, help_set_param_txt },
{ "SET IP", con_set_ip, help_set_txt },
{ "SET NETMASK", con_set_netmask, help_set_txt },
{ "SET GATEWAY", con_set_gateway, help_set_txt },
{ "SET NAMESERVER", con_set_nameserver, help_set_txt },
{ "SET MAIL", NULL, help_set_mail_txt },
{ "SET MAIL SERVER", con_set_mail_server,

help_set_mail_server_txt },
{ "SET MAIL FROM", con_set_mail_from, help_set_mail_from_txt },
{ "SHOW", con_show, help_show_txt },
{ "PUT", con_put, help_put_txt },
{ "GET", con_get, help_get_txt },
{ "DELETE", con_delete, help_delete_txt },
{ "LIST", NULL, help_list_txt },
{ "LIST FILES", con_list_files, help_list_txt },
{ "LIST VARIABLES", con_list_variables, help_list_txt },
{ "CREATEV", con_createv, help_createv_txt },
{ "PUTV", con_putv, help_putv_txt },
{ "GETV", con_getv, help_getv_txt },
{ "MAIL", con_mail, help_mail_txt },
{ "RESET", NULL, help_reset_txt },
{ "RESET FILES", con_reset_files, help_reset_files_txt },
{ "RESET VARIABLES", con_reset_variables,

help_reset_variables_txt }
};
222 TCP/IP User’s Manual

/*
* This array sets up the error messages that can be generated.
* CON_STANDARD_ERRORS is a macro that expands to the standard
* errors that the built-in commands in zconsole.lib uses. Users
* can define their own errors here, as well.
*/

const ConsoleError console_errors[] = {
CON_STANDARD_ERRORS

};
/*
* This array defines the information (such as configuration) that
* will be saved to the filesystem. Note that if, for example, the
* HTTP or SMTP related commands are include in the console_commands
* array above, then the backup information must be included in
* this array. The entries below are macros that expand to the
* appropriate entry for each set of functionality. Users can also
* add their own information to be backed up here by adding more
* ConsoleBackup structures.
*/

const ConsoleBackup console_backup[] =
{

CONSOLE_BASIC_BACKUP,
CONSOLE_TCP_BACKUP,
CONSOLE_HTTP_BACKUP,
CONSOLE_SMTP_BACKUP

};

/*
* The following defines the MIME types that the web server will handle.
*/

const HttpType http_types[] =
{

{ ".shtml", "text/html", shtml_handler}, // ssi
{ ".html", "text/html", NULL}, // html
{ ".gif", "image/gif", NULL},
{ ".jpg", "image/jpeg", NULL},
{ ".jpeg", "image/jpeg", NULL},
{ ".txt", "text/plain", NULL}

};

/*
Chapter 11: General Purpose Console 223

void main(void)
{

/*
* All initialization of TCP/IP, clients, servers, and I/O
* must be done by the user prior to using any console functions.
*/

sock_init();
tcp_reserveport(80); // Enable SYN-queueing and disable the

// 2MSL wait for the web server (results
// in performance improvements).

http_init();

if (fs_init(0, 64)) {
printf("Filesystem not present!\n");

}

if (console_init() != 0) {
printf("Console did not initialize!\n");
fs_format(0, 64, 1);
/*
* Anytime after the file system has been initialized or
* formatted (after console_init() has been executed),
* con_backup_reserve() must be called to reserve space in
* the file system for the backup information.
*/

con_backup_reserve();
con_backup(); // Save the backup information to the console.

}

while (1) {
console_tick();
http_handler();

}
}

224 TCP/IP User’s Manual

Index

Numerics

2MSL81

A

Application Protocols
FTP Client169
FTP Server173
HTTP133
POP3 Client193
SMTP Client187
Telnet199
TFTP179

B

Buffer sizes10

C

Checksums51
Console203

Backup System216
circular buffers214
Commands204

action taken204
command array205
custom commands209
data structure204
default commands205
default functions206
help overview204
help text for command .204
name of command204

configuration macros217
Console Execution213

slave port213
Telnet212
terminal emulator215

Daemon215
Error Messages210

custom error messages .211
default error messages ..210

file system initialization ...214
I/O Interface212

custom I/O methods213
including an I/O method

212
multiple I/O streams213
predefined I/O methods 212

Initialization215
physical connection213
required functions215
sample program218

using TCP/IP214

D

Daemons
ftp_client_tick171
ftp_tick177
http_handler162
pop3_tick196
tcp_tick82
telnet_tick200
tftp_tick183

E

E-mail
POP3 Client

call-back function194
configuration193
receiving e-mail193
sample conversation198
sample program197

SMTP Client
configuration188
debug188
define server188
HELO command188
sample conversation187
sample program192
sending e-mail187
timeout value188

Ethernet Transmission Unit ...46

F

FTP Client169
download file169
FTP daemon171
port number169
set up file transfer170
size of downloaded file171
upload files169

FTP Server173
anonymous login173
Configuration Constants ..173

buffer size173
connection timeout173
simultaneous connections ..

173
string lengths173

file handlers174
sample program178

Function Reference
Addressing

arp_resolve21
getdomainname23

gethostid24
gethostname24
getpeername25
getsockname26
pd_getaddress33
psocket34
resolve35
setdomainname38
sethostid39
sethostname39

CGI
cgi_redirectto158
cgi_sendstring159

Configuration
tcp_config75

Console
console_init215
console_tick215

Cookie
http_setcookie164

Data Conversion
htonl27
htons27
http_contentencode160
http_urldecode165
inet_addr28
inet_ntoa29
ntohl31
ntohs32
paddr32
rip36

E-mail
pop3_getmail196
pop3_init195
pop3_tick196
smtp_mailtick191
smtp_sendmail189
smtp_sendmailxmem ...190
smtp_status191

FTP Client
ftp_client_filesize171
ftp_client_setup170
ftp_client_tick171

FTP Server
ftp_init177
ftp_tick177

HTML Forms
http_finderrbuf161
http_nextfverr162
http_parseform163
sspec_addfv96
sspec_findfv102
sspec_getformtitle105
sspec_getfvdesc107
TCP/IP User’s Manual 225

sspec_getfventrytype ... 108
sspec_getfvlen 108
sspec_getfvname 109
sspec_getfvnum 109
sspec_getfvopt 110
sspec_getfvoptlistlen ... 110
sspec_getfvreadonly 111
sspec_setformepilog 120
sspec_setformfunction . 121
sspec_setformprolog 122
sspec_setformtitle 123
sspec_setfvcheck 124
sspec_setfvdesc 125
sspec_setfventrytype ... 125
sspec_setfvfloatrange .. 126
sspec_setfvlen 126
sspec_setfvname 127
sspec_setfvoptlist 127
sspec_setfvrange 128
sspec_setfvreadonly 128

HTTP server
http_handler 162
http_init 163

Ping
_chk_ping 22
_ping 34
_send_ping 37

Socket Configuration
sock_mode 51
tcp_clearreserve 74
tcp_reserveport 81

Socket Connection
sock_abort 40
sock_close 42
sock_established 44

Socket I/O
sock_fastread 45
sock_fastwrite 46
sock_flush 47
sock_flushnex 48
sock_getc 49
sock_gets 50
sock_preread 52
sock_putc 53
sock_puts 54
sock_read 56
sock_write 73
tcp_listen 77
tcp_open 79

Socket I/O Buffer
sock_rbleft 54
sock_rbsize 55
sock_rbused 55
sock_tbleft 67

sock_tbsize 68
sock_tbused 68

Socket Status
sock_bytesready 41
sock_dataready 42
sockerr 43
sockstate 66
tcp_tick 82

TCP/IP Engine
sock_init 50
tcp_tick 82

TCP/IP servers’ list
http_delfile 161

TCP/IP servers’ object list
http_addfile 159
shtml_addfunction 166
shtml_addvariable 167
shtml_delfunction 168
shtml_delvariable 168
sspec_addform 94
sspec_addfsfile 95
sspec_addfunction 96
sspec_addrootfile 97
sspec_addvariable 98
sspec_addxmemfile 99
sspec_addxmemvar 100
sspec_aliasspec 101
sspec_checkaccess 102
sspec_findname 103
sspec_findnextfile 104
sspec_getfileloc 104
sspec_getfiletype 105
sspec_getfunction 106
sspec_getfvspec 111
sspec_getlength 112
sspec_getname 112
sspec_getrealm 113
sspec_gettype 113
sspec_getusername 114
sspec_getvaraddr 114
sspec_getvarkind 115
sspec_getvartype 115
sspec_needsauthentication .

116
sspec_readfile 117
sspec_readvariable 118
sspec_remove 118
sspec_restore 119
sspec_save 119
sspec_setrealm 129
sspec_setsavedata 130
sspec_setuser 131

TCP/IP users list
sauth_adduser 90

sauth_authenticate 91
sauth_getusername 92
sauth_getwriteaccess 92
sauth_setwriteaccess 93

TFTP Client
tftp_exec 185
tftp_init 181
tftp_initx 182
tftp_tick 183
tftp_tickx 184

Timers
ip_timer_expired 29
ip_timer_init 31

UDP Socket I/O
sock_recv 62
sock_recv_from 64
sock_recv_init 65
udp_open 83

H

HTML Forms 145
buffer allocation 152
FORM tag 145

ACTION option 145
METHOD option 145

INPUT tag 145
NAME parameter 145
SIZE parameter 145
TYPE parameter 145
VALUE parameter 145

option list 156
POST-style submission ... 148
pulldown menu 153
sample page 146
Zserver.lib functionality .. 152

HTTP Servers 133
authentication 134
CGI 145

sample handler 150
configurable constants 137
Data Structures 133

HttpRealm 134
HttpSpec 133
HttpState 135
HttpType 134

dynamic web pages 141
file extensions 134, 140
HTML Forms 145
MIME type 134
number of servers 137
POST command 148
protection spaces 134
SSI 144
static web pages 138
226 TCP/IP User’s Manual

URL-encoded Data148
Reading & Storing149

I

IP Addresses
lease4, 5
Set Dynamically3
Set Manually3

M

Maximum Segment Size10
memmap15
MIME types140

N

Nagle algorithm51

P

Packet Processing16
POP3 Client

Configuration193
debug option193

receiving e-mail193

R

Reset clock138

S

Server Utility Library87
configurable constants88
Data Structures87

access88
TCP/IP servers’ object list .

87
TCP/IP users list87

number of objects89
number of users89
object types88
variable types88

SMTP Client
Configuration188

debug option188
define mail server188
HELO command188
timeout value188

sending e-mail187
Socket

data structure10
default mode13
definition10
empty line vs empty buffer 41

T

TCP Socket10
Active Open11
Blocking Macros17
Control Functions11
Delay a Connection11
I/O Functions13

Blocking17
Non-Blocking16

Passive Open10
TCP/IP3

Configuration3
BOOTP/DHCP3
I/O Buffers10
IP Addresses3
MAC address3
Skeleton Program15

Initialization15
Multitasking18

TFTP Client179
Data Structure180
DHCP/BOOTP179
stack space180

Tick rates16

U

UDP
Broadcast Packets14
Performance15

UDP Socket
Checksum15
Functions13
Open and Close14
Read14
record service65
Write14

URL-encoded Data148, 149

W

Well-known Ports
FTP server173
HTTP server137
POP3193
SMTP server187
TCP/IP User’s Manual 227

	Introduction �1
	TCP/IP Engine �2
	2.1� TCP/IP Configuration
	2.1.1� IP Addresses Set Manually
	2.1.2� IP Addresses Set Dynamically
	2.1.2.1 BOOTP/DHCP Control Macros
	2.1.2.2 BOOTP/DHCP Global Variables
	2.1.2.3 BOOTP/DHCP Functions
	2.1.2.4 DHCP Sample Program

	2.1.3 Sizes for TCP/IP I/O Buffers

	2.2� TCP Socket Interface
	2.2.1� Number of Sockets
	2.2.2� Passive Open
	2.2.3 Active Open
	2.2.4 Delay a Connection
	2.2.5 TCP Socket Functions
	2.2.5.1 Control Functions
	2.2.5.2 Status Functions
	2.2.5.3 I/O Functions

	2.3� UDP I/O Interface
	2.3.1� Opening and Closing a UDP Socket
	2.3.2� Writing to a UDP Socket
	2.3.3� Reading From a UDP Socket
	2.3.4� Checksums

	2.4� Skeleton Program
	2.4.1� TCP/IP Stack Initialization
	2.4.2� Packet Processing
	2.4.3� TCP/IP Daemon Computing Time

	2.5� State-Based Program Design
	2.5.1� Blocking vs. Non-Blocking
	2.5.1.1 Non-Blocking Functions
	2.5.1.2 Blocking Functions
	2.5.1.3 Blocking Macros

	2.6� Multitasking and TCP/IP
	2.6.1� µC/OS-II
	2.6.2� Cooperative Multitasking

	2.7� Function Reference
	2.8� Macros

	Server Utility Library �3
	3.1� Data Structures for Zserver.lib
	3.1.1� ServerSpec Structure
	3.1.2� ServerAuth Structure
	3.1.3� FormVar Structure

	3.2� Constants Used in Zserver.lib
	3.2.1� ServerSpec Type Field
	3.2.2� ServerSpec Vartype Field
	3.2.3� Servermask field
	3.2.4� Configurable Constants

	3.3� HTML Forms
	3.4� Functions

	HTTP Server �4
	4.1� HTTP Server Data Structures
	4.1.1� HttpSpec
	4.1.1.1� HttpSpec fields

	4.1.2� HttpType
	4.1.3� HttpRealm
	4.1.4� HttpState
	4.1.4.1� HttpState Fields

	4.2� Configuration Constants
	4.3� Sample Programs
	4.3.1� Serving Static Web Pages
	4.3.1.1� Adding Files to Display
	4.3.1.2� Adding Files with Different Extensions
	4.3.1.3� Handling of Files With No Extension

	4.3.2� Dynamic Web Pages Without HTML Forms
	4.3.2.1� SSI Feature
	4.3.2.2� CGI Feature

	4.3.3� Web Pages With HTML Forms
	4.3.3.1� Sample HTML Page
	4.3.3.2� POST-style form submission
	4.3.3.3� URL-encoded Data
	4.3.3.4� Sample of a CGI Handler

	4.3.4� HTML Forms Using Zserver.lib

	4.4� Functions

	FTP CLIENT �5
	5.1� Configuration Macros
	5.2� Functions
	5.3� Sample FTP Transfer

	FTP Server �6
	6.1� Configuration Constants
	6.1.1� File Options

	6.2� File Handlers
	6.3� Functions
	6.4� Sample FTP Server

	TFTP Client �7
	7.0.1� BOOTP/DHCP
	7.0.2� Data Structure for TFTP
	7.0.3� Function Reference
	7.0.3.1 TFTP Session

	SMTP Mail Client �8
	8.1� Sample Conversation
	8.2� Configuration
	8.3� Functions
	8.4� Sample Sending of an E-mail

	POP3 Client �9
	9.1� Configuration
	9.2� Three Steps to Receive E-mail.
	9.3� Call-Back Function
	9.3.1� Normal call-back
	9.3.2� POP_PARSE_EXTRA call-back

	9.4� Functions
	9.5� Sample receiving of e-mail
	9.5.1� Sample Conversation

	Telnet �10
	10.1� Configuration Macros
	10.2� Functions
	10.3� An Example Telnet Server
	10.3.1� A Sample Client To Connect to the Server

	General Purpose Console �11
	11.1� Introduction
	11.2� Console Features
	11.2.1� Using other Dynamic C Libraries

	11.3� Console Commands and Messages
	11.3.1� Console Command Data Structure
	11.3.1.1 Help Text for General Cases

	11.3.2� Console Command Array
	11.3.3� Console Commands
	11.3.3.1 Default Command Functions
	11.3.3.2 Custom Console Commands

	11.3.4� Console Error Messages
	11.3.4.1 Default Error Messages
	11.3.4.2 Custom Error Messages

	11.4� Console I/O Interface
	11.4.1� How to Include an I/O Method
	11.4.2� Predefined I/O Methods
	11.4.2.1 Serial Ports
	11.4.2.2 Telnet
	11.4.2.3 Slave Port
	11.4.2.4 Custom I/O Methods

	11.4.3� Multiple I/O Streams

	11.5� Console Execution
	11.5.1� File System Initialization
	11.5.2� Serial Buffers
	11.5.3� Using TCP/IP
	11.5.4� Required Console Functions
	11.5.5� Console Execution Choices
	11.5.5.1 Terminal Emulator

	11.6� Backup System
	11.6.1� Data Structure for Backup System
	11.6.2� Array Definition for Backup System

	11.7� Console Macros
	11.8� Sample Program

	Index

