

Slide #163

Slide #164

We started the day discussing the traditional design process. The problem is that this process is non-predictive. You hope that your design works, but in case it doesn't you run multiple physical prototype boards varying some of the components hoping that one works.

Slide #165

Next we introduced a new process that uses EDA software to refine the design early in the development process.

Slide #166

Modern Predictive RF Design is made possible with the HP Advanced Design System. System level, circuit level, simulation and layout are all provided in an integrated environment and much more.

Slide #167

The first case study focused on an LNA design.

Slide #168

We then looked at the effects of component tolerances.

Slide #169

The second case study covered the design of a power amplifier.

Slide #170

We simulated and measured the amplifier performance using digital modulation.

Slide #171

The final section covered fixturing and calibration issues which arise when characterizing devices.

Slide #172

Thank You for Attending -HP RF Design and Measurement

Authors:
David Ballo
Joe Civello
Ed Henicle
Sara Meszaros
Andy Potter
Boyd Shaw
My Le Truong