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Frequency-Hopped Spread Spectrum

» Spread-spectrum communications allow a large number of
users can share the same spectrum; intended user searches
for particular spreading code

* FCC has allocated 902-928 MHz band for unlicensed, spread-

spectrum use

 Techniques of spectrum spreading: direct-sequence or

frequency-hopping

» Frequency-hopped spread-spectrum allows wideband
spreading at any data rate (O low power dissipation), but
needs agile frequency source
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Methods of Frequency Synthesis

Phase-Locked Loop
* Frequency agility limited by loop
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Frequency-Hopping RF Transmitter

Direct Digital
Frequency Synthesizer
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» Single-step I-Q upconversion produces « Order of anti-alias filter depends
single-sideband, suppressed-carrier on highest output frequency
output in the 902-928 MHz band relative to sample rate

« DDFS/DAC need only span 000 13 MHz: « Acceptable image suppression
sign-select at output produces 902-915 requires 8b matching in two

MHz, or 915-928 MHz

channels



Direct Digital Frequency Synthesizer
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35 mW at 50 MHz, 3 V!
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» DDFS guarantees spurious levels < —72 dBc

» Output frequency resolution is (Sample Rate)/2*
[J ROM contains only quarter-wave data

[ SIN and COS generated from same ROM by phase-shift of argument
[J ROM stores difference between amplitude and phase (saves 2 bits)

ROM is 32x smaller

[J One large table is replaced by small coarse and fine tables



Principle of Low-Power, High-Speed DAC
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« Binary division by successive * Pipelined operation produces one
charge redistribution conversion per clock cycle

» Equal-sized capacitors required  Linearity limited by:

« Three-phase clock for proper EEAC Capacit_ormisrn%gé ”
charge-transfer tray capacitance in cells

[1 Signal-dependent charge injection after redistribution



DAC Implementation
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» Differential implementation using two charge-
redistribution pipelines

» Output buffer must be at least as linear as
DAC — differential buffer degenerated by
polysilicon resistor, and driven in closed-loop
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What Sets DAC Power Dissipation?

Sources of Power Dissipation

« No static power dissipation in DAC core, but small dynamic CV2f dissipation
» Clock buffers driving DAC switches dissipate most power

[ Power dissipation decreases as DAC cells are scaled down

Lower Limits to Scaling

« 0.5 pF capacitors (400 sg-pm area) match to within 0.1% rms
Pelgrom, et al., IEEE JSSC, Oct 1989

« Switch-induced noise with 0.5 pF capacitors accumulating in DAC =
170 pV rms; output buffer noise = 110 uV rms O LSB size > 0.5 mV

* RC time constant for settling to 10 b at 50 MHz sets width of switch
FET O lower limit on nonlinear charge injection
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1-um CMOS with double-metal, linear capacitor
2.9 x 49 mm die size




Low-Frequency Synthesis

50 MHz Sample Rate
3 V Supply
.|
62 dB
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[1 Noise floor set by quantization noise

— measure 2 dB higher than theoretical limit

[1 Spurious level as predicted
— set by capacitor mismatch

5 MHz

Repeatability

Number of chips (normalized)

Measured

35

Expected from
Monte-Carlo
Simulations

60 65 70
SFDR, dB



High-Frequency Synthesis

- 50 MHz Sample Rate 16.715 MHz
|| 3 V Supply 7
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57 dB * Spurious levels grow at

high frequencies due to
1fF inter-cell stray

capacitance

\. * No slew-rate limiting or
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» On-chip digital circuits

0 25 MHz do not contaminate
output spectrum!
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Frequency Agility
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» Output instantly switches from one frequency to another
(after 8 clock cycle latency through DDFS/DAC)

« Anti-alias filter will limit the settling response in system



Conclusions

[1 First demonstration of monolithic CMOS 10b DDFS/DAC

[J Low-power design leads to 35 mW DDFS, and 5 mW 10b
DAC core, both operating at 50 MHz from 3-V

[J Spectral purity from untrimmed parts is —62 dBc at low
frequencies, —57 dBc at 1/3 Sample Rate

[J Low-power circuits [1 small interaction between analog and
digital parts of the chip

[1 Direct digital frequency synthesis is a viable solution for an
agile sinewave source in battery-powered wireless
transceivers



